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I. INTRODUCTION

Nonlinear dynamics and its subdiscipline ‘‘chaos theory”’
have swept over the landscape of science, mathematics, and
engineering in the past two decades. The subject has ben-
efited from some good public relations (Ref. 75), but its stay-
ing power is rooted in the universality of its methods and
results: Although each nonlinear system may be quite dis-
tinct in its detailed behavior, most nonlinear systems fall into
broad classes with common qualitative and quantitative fea-
tures. Many of the theoretical and experimental advances in
nonlinear science, moreover, can be explored with only a
rudimentary background in mathematics and a pocket calcu-
lator or with simple computer programs (Refs. 42, 67, and
Sec. VII). Experiments, such as the forced vibrations of a
simple pendulum (Ref. 12), a bouncing ball (Ref. 27), or a
semiconductor diode circuit (Sec. VI B), are straightforward
and inexpensive. Because nonlinear effects are observed in
everyday phenomena—such as a dripping faucet (Sec. VI I)
or avalanches in sandpiles (Sec. VI F)—they capture the
imagination of students at all levels.

Nonlinear dynamics can appear at several points in the
undergraduate or graduate curriculum. It can be included as a
special topic in a standard course in classical mechanics
(Ref. 79) or differential equations (Ref. 48). Courses focus-
ing on nonlinear dynamics at the junior, senior, or beginning
graduate level are also becoming common (Sec. IV B). Sev-
eral books aim to introduce nonlinear dynamics to students
who are not necessarily science majors (Sec. IV A and Ref.
10).
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There are two important themes in nonlinear dynamics.
One emphasizes the temporal behavior of systems, most with
no significant spatial variation. The other emphasizes spatial
structures and the formation of spatial patterns. Most begin-
ning courses in nonlinear dynamics focus on the temporal
behavior of ‘‘low-dimensional’’ systems, that is, those gov-
emed by a few degrees of freedom, for which there now
exists a fairly complete body of theoretical results and ex-
perimental techniques (Sec. IV B and Ref. 90). Methods of
nonlinear time-series analysis (Sec. VD and Ref. 53), in
which a sequence of values of a single dynamical variable is
used to determine the qualitative and quantitative measures
of the temporal dynamical behavior of the entire system,
have dominated both the theoretical and experimental meth-
odologies and are already finding their way into many prac-
tical applications.

The extension of these notions to higher-dimensional Sys-
tems, to problems of ‘‘spatiotemporal’’ chaos. and to the
question of turbulence is still a subject of active debate and
inquiry (Sec. VI F). So too is the question of the correspon-
dence between chaos in classical and quantum-mechanical
systems (Sec. VIJ). Both issues, though, have motivated
some exciting new experimental and theoretical work.

The crucial theoretical construct in nonlinear dynamics is
phase space (also called state space). Each of the (indepen-
dent) dynamical variables is used as a coordinate to construct
the state space for the system. For a deterministic system, the
future behavior is determined by the current state of the Sys-
tem, represented as a point in state space. As a system
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evolves in time, its state-space representation maps out a
trajectory in that space. Sets of trajectories form a phase
portrait. These phase portraits often have interesting geomet-
ric properties. For example, chaotic systems can have phase
portraits with a fractal geometric structure.

The important and distinctive features of nonlinear behav-

ior are as follows:

Symmetry-breaking, either temporal or spatial. The tem-
poral response of a system need not be the same as that of
the ‘‘driving force.”” Even autonomous systems (those
with no explicit time-dependent forcing) can spontane-

ously develop complex temporal behavior. The most dra-

matic of these broken symmetries is chaotic behavior,
which is bounded, completely aperiodic behavior. For
nonlinear systems with significant spatial variation, the
spatial patterns may be independent of the boundary con-
ditions.

Dramatic changes in behavior, called bifurcations, which
occur over extremely small parameter ranges. There are
several common classes of bifurcation events—including
period doubling, intermittency, and crises—that organize
the transitions between regular (periodic) behavior and
chaotic behavior.

Sensitive dependence on initial conditions (the so-called
Butterfly Effect) (Refs. 5 and 9): Small changes in initial
conditions may lead to qualitatively and quantitatively dif-
ferent long-term behavior. Such sensitivity leads to the
loss of long-term predictability even if the system is com-
pletely deterministic.

Universal scaling laws for the transitions between chaotic
and regular behavior.

Much of the analysis of the temporal behavior of nonlinear

systems is carried out using time-series data from a single
dynamical variable. The series may be generated by using a
‘‘stroboscopic’’ technique: Every time the state-space trajec-
tory intersects a plane in the state space, forming a so-called
Poincaré section, a data point is recorded. From such a se-
ries, the topology and dynamics of the entire attractor can be
reconstructed. See the references in Sec. V C and the texts in
Sec. IV B.

We have selected references that emphasize the breadth

and connectedness of nonlinear dynamics at a level appro-
priate for someone new to the field, although we have in-
cluded advanced-level citations for historically important pa-
pers or those that have played a significant role in the
modern development of nonlinear dynamics.

II. JOURNALS

Journals with predominantly nonlinear dynamics articles:
Chaos

Chaos, Solitons and Fractals

Dynamics and Stability of Systems

Ergodic Theory and Dynamical Systems

Fractals

International Journal of Bifurcations and Chaos
Journal of Nonlinear Science

Nonlinear Dynamics

Nonlinearity

Physical Review E (prior to 1993, Physical Review A)
Physica D

Rapid publication journals with a significant number of

papers devoted to nonlinear dynamics:
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Europhysics Letters

Physics Letters A

Physical Review Letters

Other journals that often have articles on nonlinear dy-
namics:

American Journal of Physics

Computers in Physics

European Journal of Physics .

International Journal of Nonlinear Mechanics

Journal of Statistical Physics

III. CONFERENCE PROCEEDINGS

Several conferences on nonlinear dynamics are held regu-
larly.

1. SIAM Conference on Applications of Dynamical Systems (every other
year).

2. Proceedings of the First Experimental Chaos Conference, edited by
S. Vohra er al. (World Scientific, Singapore, 1992).

3. Proceedings of the Second Experimental Chaos Conference, edited
by W. Ditto er al. (World Scientific, Singapore, 1995).

4. Measures of Spatio-Temporal Dynamics, edited by A. M. Albano, P.
E. Rapp, N. B. Abraham, and A. Passamante (North-Holland, Amster-
dam, 1996).-

IV. TEXTBOOKS AND EXPOSITIONS

A. Popularizations

5. Chaos, Making a New Science, J. Gleick (Viking, New York, 1987).
A best-seller that chronicles the development of the scientific study of
chaos. Includes good biographical sketches of many of the major play-
ers in the development of chaos. (E)

6. Does God Play Dice? The Mathematics of Chaos, 1. Stewart (Black-
well, New York, 1989). For the scientifically literate reader. Empha-
sizes the mathematical approach to chaos, but does pay some attention
to experiments. (E)

. Order Out of Chaos, I. Prigogine and I. Stengers (Bantam, New York,
1984). A wide-ranging look at the new paradigm: how order can de-
velop from randomness in nonequilibrium systems. (E)

8. Newton’s Clock: Chaos in the Solar System, 1. Peterson (Freeman,
New York, 1993). An excellent introduction to the history of nonlinear
dynamics. (E)

9. The Essence of Chaos, E. N. Lorenz (University of Washington Press,
Seattle, 1993). The text of popular lectures given by Lorenz, one of the
pioneers of chaos. (E)

~3

B. Introductory texts for science students

The following are listed more or less in order of increasing

demands on the reader’s mathematical sophistication.

10. Chaos Under Control: The Art and Science of Complexity, D. Peak
and M. Frame (Freeman, New York, 1994). Intended for a course for
first-year college students. (E)

11. Understanding Nonlinear Dynamics, D. Kaplan and L. Glass
(Springer-Verlag, New York, 1995). Biological and medical orienta-
tion. (E)

12. Chaotic Dynamics, An Introduction (2nd ed.), G. Baker and J. Gol-
lub (Cambridge U.P., New York, 1996). A brief introduction to chaos.
Emphasizes the driven, damped pendulum and the use of the personal
computer. (E.I)

13. Chaotic and Fractal Dynamics, An Introduction for Applied Sci-
entists and Engineers, F. C. Moon (Wiley, New York. 1992). An
excellent introduction, with an emphasis on engineering applications.
(E,D

14. From Clocks to Chaos, The Rhythms of Life, L. Glass and M. C.
Mackey (Princeton U.P., Princeton, NJ, 1988). Most of the physiologi-
cal discussions are accessible to the nonspecialist. (E,I)

15. Chaos and Nonlinear Dynamics: An Introduction for Scientists and
Engineers, R. C. Hilborn (Oxford U.P., New York, 1994). A compre-
hensive introduction to nonlinear dynamics at the sophomore-junior
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16.

17.

18.

19.

20.

21.

22.

23.

25.

26.

27.

28.

29.

30.

physics major level. Designed to start from scratch and to bring the
reader to the point of being able to deal with the research literature in
nonlinear dynamics. (E.I)

Response and Stability, A. P. Pippard (Cambridge U.P., Cambridge,
1985). Treats driven oscillators. nonlinear oscillators, bifurcations, ca-
tastrophes, phase transitions, and broken symmetries at the advanced
undergraduate level. (I)

Nonlinear Dynamics and Chaos: With Applications in Physics, Bi-
ology, Chemistry and Engineering, S. H. Strogatz ( Addison-Wesley,
Reading, MA, 1994). An excellent book for an introductory applied-
mathematics course at the undergraduate level. (I)

Chaos: An Introduction to Dynamical Systems, K. T. Alligood, T.
Sauer, and J. A. Yorke (Springer-Verlag, New York, 1996). 1Y)
Nonlinear Dynamics: A Two-Way Trip from Physics to Math, H.
G. Solari, M. A. Natiello, and G. B. Mindlin (Institute of Physics,
Bristol, PA, 1996). (I)

Order within Chaos, P. Bergé, Y. Pomeau, and C. Vidal (Wiley, New
York, 1986). A somewhat dated introduction assuming roughly a first-
level graduate-student background in physics. Particularly good discus-
sion of quasi-periodicity and intermittency. (I)

Nonlinear Dynamics and Chaos, J. M. T. Thompson and H. B. Stew-
art (Wiley, New York, 1986). Covers a wide range of ‘‘classical”’
nonlinear dynamics problems, but there is not much on modern meth-
ods such as time-series analysis, generalized dimensions, and so on. (I)
Introduction to Nonlinear Dynamics for Physicists, H. D. I. Abar-
banel, M. I. Rabinovich, and M. M. Sushchik (World Scientific, Sin-
gapore, 1993). A compact, but quite useful introduction to nonlinear
dynamics at the graduate level. I)

Applied Nonlinear Dynamics: Analytical, Computational, and Ex-
perimental Methods, A. H. Nayfeh and B. Balachandran (Wiley, New
York, 1995). (I)

. Deterministic Chaos, An Introduction (3rd revised ed.), H. G.

Schuster (Wiley, New York, 1995). A rather compact (319 pp.) intro-
duction at roughly the graduate level in physics. (I)

Perspectives of Nonlinear Dynamics (Vols. 1 and 2), E. A. Jackson
(Cambridge U.P., New York, 1989, 1991). A very thoughtful and en-
gaging book. A careful look at mathematical assumptions. Gradually
builds up complexity of results, but rather heavy emphasis on analyti-
cal methods (perturbation methods, averaging methods, and so on).
(LA)

The Kinematics of Mixing: Stretching, Chaos, and Transport, J. M.
Ottino (Cambridge U.P., Cambridge, 1989). Within the context of fluid
flow and transport, this book provides an excellent introduction to cha-
otic behavior. (I)

An Experimental Approach to Nonlinear Dynamics and Chaos, N.
Tufillaro, T. Abbott, and J. Reilly (Addison-Wesley, Reading, MA,
1992). This book, at the upper-undergraduate and graduate physics
level, treats nonlinear dynamics by focusing on experimental systems
and using several computer-based models. I)

Chaotic Dynamics of Nonlinear Systems, S. N. Rasband (Wiley, New
York, 1990). (I)

Chaos in Dynamical Systems, E. Ott (Cambridge U.P., New York,
1993). A fine book covering many topics in nonlinear dynamics. (I)
Exploring Complexity, G. Nicolis and I. Prigogine (Freeman, San
Francisco, 1989). This wide-ranging book covers many topics in pat-
tern formation, complexity, and chaotic dynamics. Rather compact and
scientifically sophisticated. (I.A)

C. Collections of reprints

31.

32.

33.

4.
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Chaos, edited by H. Bai-Lin (World Scientific, Singapore, Vol. I, 1984,
Vol. II, 1989). (E.I)

Universality in Chaos (2nd ed.). edited by P. Cvitanovic (Hilger,
Bristol, 1989). (E.I)

Experimental Study and Characterization of Chaos (Directions in
Chaos, Vol. 3), edited by H. Bai-Lin (World Scientific, Singapore,
1990). (E.I)

Coping with Chaos: Analysis of Chaotic Data and the Exploitation
of Chaotic Systems, edited by E. Ott, T. Sauer, and J. A. Yorke
(Wiley, New York, 1994). Collection of 41 reprints dealing with the
analysis of data from nonlinear systems. (I)
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D. Advanced texts and monographs

3s.

36.

37.

38.

39.

40.

The Lorenz Equations: Bifurcations, Chaos, and Strange Attrac-
tors, C. Sparrow (Springer-Verlag, New York. 1982). (A)
Hamiltonian Dynamical Systems, R. S. Mackay and J. D. Meiss
(Hilger, Bristol, 1987). (A) .

Weak Chaos and Quasi-Regular Patterns, G. M. Zaslavsky, R. Z.
Sagdeev, D. A. Usikov, and A. A. Chernikov (Cambridge U.P., Cam-
bridge, 1991). An excellent introduction to stochastic layers and diffu-
sion in the phase space of Hamiltonian systems. (I)

Regular and Chaotic Dynamics (2nd ed.), A. J. Lichtenberg and M.
A. Liebermann (Springer-Verlag, New York, 1992). (A)

Time Series Prediction: Forecasting the Future and Understanding
the Past, edited by A. S. Weigend and N. A. Gershenfeld (Addison-
Wesley, Reading, MA, 1993). (I)

Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. C.
Robinson (CRC, Boca Raton, FL, 1994). (A)

E. For the mathematically inclined reader

The following books deal primarily with the mathematical
aspects of nonlinear dynamics.

41.

42.

43.

45.

46.

47.

48.

49.

50.

Iterated Maps on the Interval as Dynamical Systems, P. Collet and
J. P. Eckmann (Birkhauser, Cambridge, MA, 1980). A thorough intro-
duction to the mathematics of iterated maps. (A)

Chaos, Fractals, and Dynamics, Computer Experiments in Math-
ematics, R. L. Devaney (Addison-Wesley, Reading, MA, 1990). An
introduction (without proofs) to some of the fascinating mathematics of
iterated maps, Julia sets, and so on. Accessible to the good secondary
school student and most college undergraduates. (E)

A First Course in Chaotic Dynamical Systems, R. L. Devaney
(Addison-Wesley, Reading, MA, 1992). A comprehensive introduction
accessible to readers with at least a year of calculus. (E)

. An Introduction to Chaotic Dynamical Systems, R. L. Devaney

(Benjamin/Cummings, Menlo Park, CA, 1986). Here are the proofs for
the fascinating mathematics of iterated maps. (I)

Encounters with Chaos, D. Gulick (McGraw-Hill, New York, 1992).
This book provides a very readable introduction to the mathematics of
one- and two-dimensional iterated map functions with many nice
proofs, examples, and exercises. Briefly covers fractals and systems of
differential equations. (I)

Dynamics: The Geometry of Behavior, R. H. Abraham and C. D.
Shaw (Addison-Wesley, Reading, MA, 1992). A picture book of
chaos! Outstanding diagrams of heteroclinic and homoclinic tangles.
and the like. This four-volume series is most useful after you have had
some general introduction to chaos. (E.I)

Dynamics and Bifurcations, J. Hale and H. Kogak (Springer-Verlag,
New York, 1991). This book provides a well-thought-out introduction
to the mathematics of dynamical systems and bifurcations with many
examples. Easily accessible to the advanced undergraduate. (I)
Geometric Methods in the Theory of Ordinary Differential Equa-
tions, V. I. Amnold (Springer-Verlag, New York, 1983). One of the best
introductions to the use of geometric methods for nonlinear differential
equations. (I)

Differential Equations, Dynamical Systems, and Linear Algebra,
M. W. Hirsch and S. Smale (Academic, New York, 1974). Contains a
proof of the famous Poincaré—Bendixson theorem. (A)

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields (3rd ed.), J. Guckenheimer and P. Holmes (Springer-
Verlag, New York, 1990). A classic in the field, but you need to know
your diffeomorphisms from your homeomorphisms. If you are serious
about the study of chaos, you will eventually come to this book. (A)

F. Collections of essays

51.

52.

53.

Chaos, edited by A. V. Holden (Princeton U.P., Princeton, NJ, 1986).
A collection of 15 essays by active researchers in the field. (I)
Nonlinearity and Chaos in Engineering Dynamics: [UTAM Sympo-
sium, UCL, July, 1993, edited by J. M. T. Thompson and S. R. Bishop
(Wiley, New York, 1994). (I)

Chaotic Evolution and Strange Attractors, D. Ruelle (Cambridge
U.P.,, New York, 1989). An extended essay (with mathematics) on
what the author considers to be the important issues in the statistical
analysis (via time series) of chaotic systems. (I)
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G. Novels and plays

Chaos and nonlinear dynamics play major roles in the fol-
lowing:
54. Jurassic Park, M. Crichton (Ballentine Books, New York, 1990). (E)
55. Death Qualified, A Mystery of Chaos, K. Withelm (Fawcett Crest,
New York. 1991). (E)
§6. Arcadia, T. Stoppard (Faber and Faber, London, 1993). (E)

V. GENERAL ASPECTS OF NONLINEAR
DYNAMICS

A. Historically important books and papers

57. New Methods of Celestial Mechanics, H. Poincaré (American Insti-
tute of Physics, Woodbury, NY, 1993). An English translation. Where
it all begins. (I)

58. *‘On relaxation oscillations,” B. van der Pol, Philos. Mag. (7) 2, 978-
992 (1926). This paper describes the original van der Pol oscillator, a
model still used for self-oscillating systems including heart beats. (I)

59. ‘‘Deterministic Nonperiodic Flow,”” E. N. Lorenz, J. Atmos. Sci. 20,
130-141 (1963). Reprinted in Ref. 31, Vol. I. One of the first modern
realizations that nonlinear systems can display sensitive dependence on
initial conditions, which then leads to chaotic behavior. (E,I)

60. ‘“The problem of deducing the climate from the governing equations,”’
E. N. Lorenz, Tellus 16 (1), 1-11 (1964). (I)

61. ‘‘Differentiable Dynamical Systems,’’ S. Smale, Bull. Am. Math. Soc.
73, 747-817 (1967). A pioneering paper in the modern theory of dy-
namical systems. (A)

62. ‘‘On finite limit sets for transformations on the unit interval,”” N. Me-
tropolis, M. L. Stein, and P. R. Stein, J. Combinatorial Theory A 15,
24-44 (1973). One of the first indications of universal features in non-
linear systems. (I)

63. *‘On the Nature of Turbulence,”” D. Ruelle and F. Takens, Commun.
Math. Phys. 20, 167-192 (1971). Reprinted in Ref. 31, Vol. I. This
article marks the first appearance of the term strange attractor in the
context of nonlinear dynamics. (A)

64. *‘Period three implies chaos,”” T.-Y. Li and J. A. Yorke, Am. Math.
Monthly 82, 985-992 (1975). The first appearance of the word
*‘chaos’’ (in its modern technical sense) in the scientific literature. (A)

65. **Simple Mathematical Models with Very Complicated Dynamics,”’ R.
M. May, Nature 261, 459-467 (1976). Reprinted in Refs. 31, Vol. I,
and 32. A very influential and quite interesting look at the behavior of
iterated map functions, written before the ‘‘discovery’’ of Feigenbaum
universality. (E)

66. ‘‘The universal metric properties of nonlinear transformations,”” M.
Feigenbaum, J. Stat. Phys. 21, 669-706 (1979). Reprinted in Ref. 31,
Vol. 1. Provides a proof of the universality of the Feigenbaum param-
eters a and 4. (I)

67. “‘Universal Behavior in Nonlinear Systems,”” M. J. Feigenbaum, Los
Alamos Sci. 1, 4-27 (1980). Reprinted in Ref. 32. Provides a quite
readable introduction to the universal features of one-dimensional iter-
ated maps. (E)

B. Survey articles

68. ‘‘Roads to Turbulence in Dissipative Dynamical Systems,”’ J.-P. Eck-
mann, Rev. Mod. Phys. 53, 643-654 (1981). An early but still useful
survey. (I)

69. “*Strange Attractors and Chaotic Motions of Dynamical Systems,”’ E.
Ott, Rev. Mod. Phys. 53, 655-672 (1981). (I)

70. *‘Chaos,” J. P. Crutchfield, J. D. Farmer, N. H. Packard, and R. S.
Shaw, Sci. Am. 255 (6), 4657 (1986). A good overview of the field of
chaos and its implications for science. Emphasizes the ideas of state
space and attractors. (E)

71. “‘Classical Chaos,”” R. V. Jensen, Am. Sci. 75, 168—181 (1987). A
well-written, detailed treatment of the major issues in the current study
of chaos with an emphasis on mathematics and theory. (E)

72. “*Nonlinearity: Historical and Technological Review,”’ R. Landauer, in
Nonlinearity in Condensed Matter, edited by A. R. Bishop, D. K.
Campbell, P. Kumar, and S. E. Trullinger, Springer Series in Solid-
State Sciences Vol. 69 (Springer-Verlag, New York, 1987), pp. 3-22.
@
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73. **Chaos in Deterministic Systems: Strange Attractors, Turbulence, and
Applications in Chemical Engineering,”” M. F. Doherty and J. M. Ot-
tino, Chem. Eng. Sci. 43, 139-183 (1988). A wide-ranging and
thoughtful survey of chaos in both dissipative and conservative sys-
tems, with an eye on engineering applications, this article is written at
roughly the beginning graduate-student level. (I)

74. *“What Is Chaos That We Should Be Mindful of [t?"* J. Ford. in The
New Physics, edited by P. W. Davies (Cambridge U. P., Cambridge.
1989), pp. 348-372. A thoughtful and provocative essay that reviews
many of the issues of quantum chaos (as well as many other issues in
classical chaos). (E)

75. *‘Chaos: A New Scientific Paradigm—or Science by Public Rela-
tions,”” M. Dresden, Phys. Teach. 30, 10—14 and 74-80 (1992). (E)

76. ‘*‘Where can one hope to profitably apply the ideas of chaos,”” D.
Ruelle, Phys. Today 47 (7), 24-30 (1994). (E)

77. “‘Poincaré, Celestial Mechanics, Dynamical-Systems Theory and
Chaos,”” P. Holmes, Phys. Rep. 193, 137-163 (1990). This wide-
ranging essay provides insight into the historical development of non-
linear dynamics at a moderately sophisticated mathematical level. (I)

78. *‘Chaos with few degrees of freedom,”” M. C. Gutzwiller, Prog. Theor.
Phys. Suppl. 116, 1-16 (1994). (I)

“C. Phase space and basins of attraction

Most of the references in Sec. IV B provide introductions
to phase space.

79. Classical Dynamics of Particles and Systems, J. B. Marion and S. T.
Thornton (Harcourt Brace Jovanovic, San Diego, 1988). A nice intro-
duction to phase space and phase diagrams in Chap. 4 in the context of
the simple-harmonic oscillator with some discussion of nonlinear os-
cillators. (I)

Basins of Attraction: For dissipative systems, the set of
points that give rise to trajectories landing on a particular
attractor are said to lie in that attractor’s basin of attraction.
The geometry of these basins can be quite complicated.
Riddled basins of attraction have the property that any point
in the basin has points in another attractor’s basin arbitrarily
close to it. Their existence implies a further undermining of
the goal of predictability—even the long-term attractor can-
not be predicted.

80. “‘Riddled Basins,” J. C. Alexander, J. A. Yorke, Z. You, and I. Kan,
Int. J. Bifurcations Chaos 2, 795-813 (1992). (I)

81. **A physical system with qualitatively uncertain dynamics,”” J. C. Som-
merer and E. Ott, Nature (London) 365, 136-140 (1993). (I)

82. “‘The transition to chaotic attractors with riddled basins,”” E. Ott, J. C.
Sommerer, J. C. Alexander, I. Kan, and J. A. Yorke, Physica D 76,
384-410 (1994). (A)

83. “‘Experimental and Numerical Evidence for Riddled Basins in Coupled
Chaotic Systems,” J. F. Heagy, T. L. Carroll, and L. M. Pecora, Phys.
Rev. Lett. 73, 3528-3531 (1994). (I)

D. Time series analysis and phase-space reconstruction
84. “‘Geometry from a Time Series,”” N. H. Packard, J. P. Crutchfield, J. D.
Farmer, and R. S. Shaw, Phys. Rev. Lett. 45, 712-715 (1980). (I)
85. *‘Detecting strange attractors in turbulence,”” F. Takens in Dynamical
Systems and Turbulence, Lecture Notes in Mathematics Vol. 898,
edited by D. A. Rand and L. S. Young (Springer—Verlag, Berlin,

1980). (A)

86. ‘‘Chaos in a noisy world—new methods and evidence from time-series
analysis,”” S. Ellner and P. Turchin, Am. Nat. 145 (3), 343-375
(1995). (E)

87. *‘State Space Reconstruction in the Presence of Noise,”” M. Casdagli,
S. Eubank, J. D. Farmer, and J. Gibson, Physica D 51, 52-98 (1991).
An extensive discussion of state-space reconstruction techniques using
embedding. (A)

88. “‘Double Poincaré Sections of a Quasi-Periodically Forced, Chaotic
Attractor,” F. C. Moon and W. T. Holmes, Phys. Lett. A 111, 157-160
(1985). (See also Ref. 13). The Poincaré section technique can be
generalized in various ways. For example, in cases where a system is
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driven by “‘forces’” with two incommensurate frequencies, taking a
Poincaré section within a Poincaré section is useful. (I)

1. Periodic orbit analysis

The properties of nonlinear systems can often be deter-
mined by looking only at low-order periodic orbits. Poincaré
pioneered this method. See Ref. 57, Chap. III, Art. 36.

89. ‘*Exploring Chaotic Motion Through Periodic Orbits,”” D. Auerbach,
P. Cvitanovic, J.-P. Eckmann, G. Gunaratne, and I. Procaccia, Phys.
Rev. Lett. 58, 2387-2389 (1987). (I)

90. ‘‘Progress in the analysis of experimental chaos through periodic or-
bits,”’ R. Badii, E. Brun, M. Finardi, L. Flepp, R. Holzner, J. Parisis, C.
Reyl, and J. Simonet, Rev. Mod. Phys. 66 (4), 1389-1415 (1994). (I)

2. Topological analysis

The topology of a state-space attractor tells much about
the underlying dynamics.

91. “‘Classification of Strange Attractors by Integers,”” G. Mindlin, X.-J.
Hou, H. G. Solari, R. Gilmore, and N. B. Tufillaro, Phys. Rev. Lett. 64,
2350-2353 (1990). (A)

92. ‘‘Relative rotation rates: Fingerprints for strange attractors,”” N. B.

Tufillaro, H. G. Solari, and R. Gilmore, Phys. Rev. A 41 (10), 5717-

5720 (1990). (A)

93. ““Topological analysis of chaotic time series data from Belousov-
Zhabotinski reaction,” G. B. Mindlin, H. G. Solari, M. A. Natiello, R.
Gilmore, and X. J. Hou, J. Nonlinear Sci. 1, 147-173 (1991). (I)

94. ‘‘Structure of chaos in the laser with saturable absorber,’’ F. Papoff, A.
Fioretti, E. Arimondo, G. B. Mindlin, H. G. Solari, and R. Gilmore,
Phys. Rev. Lett. 68, 1128-1131 (1992). (I)

95. ““Topological analysis and synthesis of chaotic time series,”” G. B.
Mindlin and R. Gilmore, Physica D 58, 229-242 (1992). Special issue
on interpretation of time series from nonlinear dynamics. (I)

96. ‘‘Braids in Classical Dynamics,”” C. Moore, Phys. Rev. Lett. 70,
3675-3679 (1993). (A)

97. “*Combining Topological Analysis and Symbolic Dynamics to De-
scribe a Strange Attractor and Its Crises,”” M. Lefranc, P. Glorieux, F.
Papoff, F. Molesti, and E. Arimondo, Phys. Rev. Lett. 73 (10), 1364—
1367 (1994). (I)

98. ‘“Topological time series analysis of a string experiment and its syn-
chronized model,”” N. B. Tufillaro, P. Wyckoff, R. Brown, T.
Schreiber, and T. Molteno, Phys. Rev. E 51 (1), 164174 (1995). (I)

99. ‘‘Braid analysis of a bouncing ball,”’ N. B. Tufillaro, Phys. Rev. E 50
(6), 4509-4522 (1994). (I)

100. ‘‘Structure in the bifurcation diagram of the Duffing oscillator,”” R.
Gilmore and J. W. L. McCallum, Phys. Rev. E 51, 935-956 (1995). (I)

E. Bifurcation theory—routes to chaos, intermittency,
and crises

Most of the texts cited in Sec. IV B give introductions to
bifurcations and the scenarios that lead from regular behavior
to the chaotic behavior. Reference 46 (Part Three, Global
Behavior and Part Four: Bifurcation Behavior) provides lav-
ishly illustrated examples of homoclinic and heteroclinic
tangles, including their effects on the Lorenz attractor. Vari-
ous bifurcation events are depicted graphically. References
47 and 101-102 give a more analytic approach.

101. “‘Introduction to Bifurcation Theory,”” J. D. Crawford, Rev. Mod.
Phys. 63, 991-1037 (1991). (I)

102. Theory of Bifurcations, V. Afraimovich, V. Amold, Y. II’yashenko,
and L. Shil’nikov, Dynamical Systems, Vol. 5. Encyclopedia of Math-
ematical Sciences, edited by V. Arnold (Springer-Verlag, New York,
1993). (A)

826 Am. J. Phys., Vol. 65, No. 9, September 1997

1. Period-doubling route to chaos

103, “*From U Sequences to Farey Sequence: A unification of one-
parameter scenarios.”” J. Rirgland. N. Issa, and M. Schell. Phys. Rev. A
41, 4223-4235 (1990). Discusses connections among several routes to
chaos. (I)

104. ‘‘Remerging Feigenbaum Trees in Dynamical Systems.’” M. Bier and
T. C. Bountis, Phys. Lett. A 104, 239-244 (1984). This paper dis-
cusses ‘‘period bubbling’’ and the remerging of the period-doubling
cascades observed in iterated maps with more than one parameter. (I)

2. Homoclinic and heteroclinic bifurcations to chaos

When a trajectory asymptotically approaches an unstable
fixed point both forwards and backwards in time, the trajec-
tory is said to be homoclinic. If two different fixed points are
linked, the trajectory is called heteroclinic. Reference 26, pp.
111-115, provides an excellent illustrated introduction to
homoclinic and heteroclinic tangles, which play an important
role in chaotic behavior in many systems. Reference 50 pro-
vides a detailed formal treatment.

105. ‘‘Homoclinic Chaos,”’ edited by P. Gaspard, A. Ameodo, R. Kapral,
and C. Sparrow, Physica D 62 (1-4) (1993). Special issue devoted to
homoclinic chaos. (A)

3. Intermittency

Behavior that switches, apparently randomly, between pe-
riodic and chaotic is called intermittency. It is treated in
some detail in the textbooks: Refs. 20, 21, 24. The intermit-
tency route to chaos was introduced by
106. ‘‘Intermittency and the Lorenz Model,”’ P. Manneville and Y. Pomeau,
Phys. Lett. A 75, 1-2 (1979). (I)

107. “‘Intermittent Transition to Turbulence in Dissipative Dynamical Sys-
tems,”’ Y. Pomeau and P. Manneville, Commun. Math. Phys. 74, 189-
197 (1980). Reprinted in Refs. 31 (Vol. I) and 32. (A)

In one type of intermittency, called on—off intermittency,
the system seems to reside in a quiescent state for varying
lengths of time before switching to chaotic behavior.
108. ‘‘On-Off Intermittency: A Mechanism for Bursting,”” N. Platt, E. A.
Spiegel, and C. Tresser, Phys. Rev. Lett. 70, 279-282 (1993). (I)
109. ‘‘Experimental Observation of On-Off Intermittency.”” P. W. Ham-
mer, N. Platt, S. M. Hammel, J. F. Heagy, and B. D. Lee, Phys. Rev.
Lett. 73, 1095-1098 (1994). (I)

110. **On-Off Intermittency in Spin-Wave Instabilities,”” F. Rodelsperger,
A. Cenys, and H. Brenner, Phys. Rev. Lett. 75, 2594-2597 (1995). (I)

4. Crises

A crisis is the sudden expansion or contraction of a cha-
otic attractor, another type of bifurcation event.

111. **Chaotic Attractors in Crisis,”” C. Grebogi, E. Ott, and J. A. Yorke.
Phys. Rev. Lett. 48, 1507-1510 (1982). This paper introduced the
concept of a crisis in nonlinear dynamics. (I)

112. *“Crises, Sudden Changes in Chaotic Attractors and Transient Chaos,’”
C. Grebogi, E. Ott, and J. A. Yorke. Physica D 7. 181-200 (1983). (I)

5. Experimental observations of crises

113. “‘Intermittent transient chaos at interior crises in the diode resonator,”’
R. W. Rollins and E. R. Hunt, Phys. Rev. A 29, 3327-3334 (1984). (I)

114. *‘Quantitative measurement of the parameter dependence of the onset
of a crisis in a driven nonlinear oscillator,”” R. C. Hilborn, Phys. Rev.
A 31, 378-382 (1985). ()

115. ‘‘Laser Chaotic Attractors in Crisis,”” D. Dangoisse. P. Glorieux, and
D. Hennequin, Phys. Rev. Lett. 57, 2657-2660 (1986). (I)

116. ‘‘Experimental Observation of Crisis-Induced Intermittency and Its
Critical Exponent,”” W. L. Ditto, S. Rauseo, R. Cawley, C. Grebogi,
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G.-H. Hsu. E. Kostelich. E. Ott. H. T. Savage. R. Segnan. M. L. Spano.
and J. A. Yorke, Phys. Rev. Lett. 63. 923-926 (1989). (I)

F. Mathematics of dynamical systems

117. **One-Dimensional Dynamics.’’ J. Guckenheimer, Ann. N.Y. Acad.
Sci. 357, 343-347 (1981). Proofs of many properties of iterated map
functions and their trajectories. (A)

118. *“A cartoon-assisted proof of Sarkowskii's Theorem,” H. Kaplan, Am.
J. Phys. 55, 1023-1032 (1987). Sarkowskii's Theorem provides a re-
markable ordering of the so-called periodic-windows in a chaotic sys-
tem. (I)

119. **First-return maps as a unified renormalization scheme for dynamical
systems,"" L. Proccacia, S. Thomae, and C. Tresser, Phys. Rev. A 35,
1884—1890 (1987). A unified, but fairly abstract, treatment of very
general one-dimensional iterated maps that include the unimodal maps
and circle maps as special cases. The dynamic behavior of these gen-
eral maps is far richer than that of unimodal and circle maps and
includes such oddities as period tripling. (A)

120. ‘‘Images of the critical points of nonlinear maps,”” R. V. Jensen and C.
R. Myers, Phys. Rev. A 32, 1222-1224 (1985). Information on the
importance of the images of the critical point in organizing patterns of
bifurcations. (I)

121. **Scaling Behavior of Windows in Dissipative Dynamical Systems,”’ J.
A. Yorke, C. Grebogi, E. Ott, and L. Tedeschini-Lalli, Phys. Rev. Lett.
54, 1095-1098 (1985). A scaling law for the sizes (as a function of
parameter) of the periodic windows of various mappings. (I)

Is the apparently random behavior observed in numerical

simulations due to computer round-off and discretization ef-

fects? Many things can go wrong when discretizing differen-

tial equations. _

122. *‘Computational chaos—a prelude to computational instability,”” E. N.
Lorenz, Physica D 35, 299-317 (1989). (I)

123. ‘“Waming—Handle with Care!”’ 1. Stewart, Nature 355, 16 (1992). (I)

124. *“Chaos is not an artifact of finite-digit arithmetic.”” R. H. Dalling and
M. E. Goggin, Am. J. Phys. 62 (6), 563-564 (1994). (I)

125. **Comment on ‘Chaos is not an artifact of finite-digit arithmetic,” [R.
H. Dalling and M. E. Goggin, Am. J. Phys. 62 (6), 563-564 (1994)]’,”
D. Auerbach, Am. J. Phys. 63 (3), 276 (1995). (I)

126. **A response to D. Auerbach’s Comment,”” M. E. Goggin and R. H.
Dalling, Am. J. Phys. 63 (3), 277 (1995). (I)

127. *‘Shadowing of Physical Trajectories in Chaotic Dynamics: Contain-
ment and Refinement,”” C. Grebogi, S. M. Hammel, J. A. Yorke, and
T. Sauer, Phys. Rev. Lett. 65, 1527-1530 (1990). Even though the
computed trajectory may not be the one you desired, it does follow
some actual trajectory. (I)

G. Predictability, determinism, the butterfly effect, and

other philosophical issues

128. ““The Recently Recognized Failure of Predictability in Newtonian Dy-
namics,”’ J. Lighthill, Proc. R. Soc. London, Ser. A 407, 35-50 (1986).
(E)

129. In the Wake of Chaos. S. H. Kellert (The University of Chicago Press,
Chicago, 1993). A philosophical analysis of the many fundamental
questions raised by chaos theory. (E.I)

H. Quasi-periodicity and number theory

130. **Onset of Turbulence in a Rotating Fluid.”" J. P. Gollub and H. L.
Swinney, Phys. Rev. Lett. 35, 927-930 (1975). The first experimental
evidence for the Ruelle-Takens quasiperiodic route to chaos. A pio-
neering paper in the contemporary development of nonlinear dynamics.
(1]

131. “*Scaling Behavior in a Map of a Circle onto Itself: Empirical Re-
sults,”” S. Shenker, Physica D 5, 405-411 (1982). Reprinted in Ref. 32.
(I

132. **Quasiperiodicity in Dissipative Systems: A Renormalization Group
Analysis,”” M. J. Feigenbaum, L. P. Kadanoff, and S. J. Shenker,
Physica D §, 370-386 (1982). Reprinted in Ref. 31, Vol. L. (I)

133. “*Universal Transition from Quasi-Periodicity to-Chaos in Dissipative
Systems,”’ D. Rand, S. Ostlund, J. Sethna, and E. Siggia, Phys. Rev.
Lett. 49, 132-135 (1982). Reprinted in Ref. 31, Vol. L. (I)
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134. *'Renormalization, Unstable Manifolds. and the Fractal Structure of
Mode Locking,”” P. Cvitanovic. M. H. Jensen, L. P. Kadanoff. and 1.
Procaccia. Phys. Rev. Lett. 55, 343-346 (1985). (A)

135. “*Universality in the quasiperiodic route to chaos,”” T. W. Dixon. T.
Gherghetta, and B. G. Kenny, Chaos 6 (1), 32-42 (1996). A good
survey of the universal features of the quasi-periodic route to chaos
illustrated with numerical results. (I)

Number theory plays a surprisingly important role in dynam-

ics. See Ref. 15, pp. 272-280. Some easily accessible intro-

ductions to number theory are

136. The Divine Proportion, H. E. Huntley (Dover, New York, 1970). A
delightful source of information on the Golden Mean. (E)

137. The Theory of Numbers, G. H. Hardy and E. M. Wright (Oxford
U.P., Oxford, 1938). (I)

I. Hamiltonian chaos

Hamiltonian dynamics deals with systems in which dissi-
pation is negligible. There are no attracting sets. Chaotic
behavior and periodic behavior may occur for different ini-
tial conditions for the same set of parameters.

138. ‘‘Self-Generated Chaotic Behavior in Nonlinear Mechanics.”” R. H. G.
Helleman, in Fundamental Problems in Statistical Mechanics, Vol.
5. edited by E. G. D. Cohen, (North-Holland, Amsterdam. 1980), pp.
165-233. Reprinted in Ref. 32. A superb introduction to the chaotic
behavior of nonintegrable Hamiltonian systems. (I)

139. “*Chaos: How Regular Can It Be?”” A. Chemnikov, R. Sagdeev. and G.
Zaslavsky, Phys. Today 41 (11), 27-35 (1988). A nice overview of the
question of mixing and chaotic behavior in Hamiltonian systems. (E.I)

140. ‘‘Hamiltonian Chaos,”” N. Srivastava, C. Kaufman, and G. Miiller,
Comput. Phys. 4, 549-553 (1990) and ‘‘Hamiltonian Chaos IL."" §.
239-243 (1991). A brief but insightful introduction to Hamiltonian
chaos for someone with an undergraduate background in classical me-
chanics. (I)

1. Period doubling in Hamiltonian systems

141. *‘Universal Behavior in Families of Area-Preserving Maps.”” J. M.
Greene, R. S. MacKay, F. Vivaldi, and M. J. Feigenbaum. Physica D 3,
468-486 (1981). (A)

142. *‘Period Doubling Bifurcations and Universality in Conservative Sys-
tems,” T. C. Bountis, Physica D 3, 577-589 (1981). (I)

2. KAM theorem and related topics

The famous Kolmogorov—Amold-Moser theorem de-
scribes how periodic and quasi-period orbits change to cha-
otic ones in Hamiltonian systems. For an introduction see
Ref. 50, pp. 219-223, and Ref. 25, Vol. 2, Appendix L.
143. Mathematical Methods in Classical Mechanics. V. I. Amold

(Springer-Verlag, New York, 1978). (I)

144. **A Universal Instability of Many Dimensional Oscillator Systems."" B.
V. Chirikov, Phys. Rep. 52, 263-379 (1979). The Chirikov Standard
Map is discussed in this lengthy review of Hamiltonian dynamics as
manifest in nonlinear oscillators. (A)

145. *‘Dissipative Standard Map,”’ G. Schmidt and B. H. Wang. Phys. Rev.
A 32, 2994-2999 (1985). Explores the connection between dissipative
and Hamiltonian systems. (I)

J. Transient chaos and chaotic scattering

* Many systems exhibit chaotic behavior as a transient ef-
fect before settling down to periodic behavior.
146. ‘‘Transient Chaos,”” T. Tél, in Ref. 33, pp. 149-211. (I)

147. “‘Exploring transient chaos in an NMR-laser experiment.’” 1. M. Janosi.
L. Flepp, and T. Tél, Phys. Rev. Lett. 73 (4), 529-532 (1994). (I)
148. *‘Time-Series Analysis of Transient Chaos,”” I. M. Janosi and T. Tél,

Phys. Rev. E 49 (4), 2756-2763 (1994). (1)
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Chaotic scattering: Spatial and temporal behavior also be-

come linked in the study of scattering problems. The basic

idea is that when a moving object collides with another ob-

ject and is deflected by it, the scattering process may show

sensitive dependence to the details of the incoming trajec-

tory, another kind of sensitive dependence on initial condi-

tions, resulting in ‘‘chaotic scattering.”’ For some taste of

this field see

149. *‘Irregular Scattering,”” B. Eckhardt, Physica D 33, 89-98 (1988). (I)

150. ‘‘Experimental Demonstration of Chaotic Scattering of Microwaves,’”
E. Doron, U. Smilansky, and A. Frenkel, Phys. Rev. Lett. 65, 3072—
3075 (1990). (1)

151. ‘‘Chaotic scattering: An introduction,”” E. Ott and T. Tél, Chaos 3 (4),
417-426 (1993). Lead-off article for focus issue on chaotic scattering.
)

152. ‘‘Chaotic Scattering,”” T. Yalcinkaya and Y. C. Lai, Comput. Phys. 9
(5), 511-518 (1995). (I)

K. Quantifying chaos—Lyapunov exponents, entropies,
and generalized dimensions.

1. General references on quantifying chaos
See Ref. 34.

153. ‘‘An Experimentalist’s Introduction to the Observation of Dynamical
Systems,”” N. Gershenfeld in Ref. 31, Vol. II, pp. 310-382. An excel-
lent introduction to many techniques for quantifying chaos with an eye
on experimental data. (E)

154. ‘“The analysis of observed data in physical systems,”” H. D. 1. Abar-
banel, R. Brown, J. J. Sidorowich, and L. Sh. Tsimring, Rev. Mod.
Phys. 65, 1331-1392 (1993). A comprehensive survey of methods of
analyzing data suspected of exhibiting chaotic behavior. (I)

155. ‘‘Ergodic Theory of Chaos and Strange Attractors,’’ J.-P. Eckmann and
D. Ruelle, Rev. Mod. Phys. 57, 617-656 (1985). A review article
surveying many methods of quantifying chaos at a more sophisticated
level. (A)

156. Analysis of Observed Chaotic Data, H. D. I. Abarbanel (Springer-
Verlag, New York, 1996). (I)

2. Surrogate data

To distinguish chaotic behavior from noisy behavior, it is
useful to generate surrogate data from your original data set.
157. “‘Do climatic attractors exist?’’ P. Grassberger, Nature 323, 609-612
(1986). (I)

158. ‘‘Testing for nonlinearity in time series: The method of surrogate
data,”” J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D.
Farmer, Physica D 58, 77-94 (1992). (I)

3. Lyapunov exponents

Lyapunov exponents quantify the exponential separation
of nearby trajectories, the hallmark of chaotic behavior.

159. ‘‘Liapunov Exponents from Time Series,”” J.-P. Eckmann, S. O. Kam-
phorst, D. Ruelle, and S. Ciliberto, Phys. Rev. A 34, 4971-4979
(1986). (I)

160. ‘‘Quantifying Chaos with Lyapunov Exponents,”” A. Wolf, in Ref. 51,
pp- 273-290. (I)

161. ‘‘Determining Lyapunov Exponents from a Time Series,”” A. Wolf, J.
B. Swift, H. L. Swinney, and J. A. Vasano, Physica D 7, 285-317
(1985). A widely used method for determining Lyapunov exponents
directly from data. (I)

162. ‘‘Studying Chaotic Systems Using Microcomputer Simulations and
Lyapunov Exponents,”’ S. DeSouza-Machado, R. W. Rollins, D. T.
Jacobs, and J. L. Hartman, Am. J. Phys. 58, 321-329 (1990). A good
introduction to Lyapunov exponents and their calculation in the case
when the time-evolution equations are known. (I)

163. ‘‘Lyapunov exponents for pedestrians,”” J. C. Eamshaw and D.
Haughey, Am. J. Phys. 61 (5), 401-407 (1993). (E)
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164. ‘*Estimation of Lyapunov exponents from time series: The stochastic
case,”” M. Dammig and F. Mitschke, Phys. Lett. A 178, 385-394
(1993). The scheme in Ref. 161 for Lyapunov exponents has problems.
W

165. ‘A practical method for calculating largest Lyapunov exponents from
small data sets,”” M. T. Rosenstein, J. J. Collins. and C. J. De Luca.
Physica D 65, 117-134 (1993). (D)

4. Scaling law for the average Lyapunov exponent

166. ‘‘Scaling Behavior of Chaotic Flows,”” B. A. Huberman and J. Rud-
nick, Phys. Rev. Lett. 45, 154-156 (1980). (I)

167. “‘Experimental Verification of a Universal Scaling Law for the
Lyapunov Exponent of a Chaotic System,”’ S. C. Johnston and R. C.
Hilborn, Phys. Rev. A 37, 2680-2182 (1988). (I)

5. Kolmogorov entropy

An entropy-like quantity can also be used to characterize
chaotic behavior. '
168. ‘‘Information Dimension and Probabilistic Structure of Chaos,”” D.
Farmer, Z. Naturforsch. 37a, 1304—-1325 (1982). (I)
169. ‘‘Estimation of the Kolmogorov Entropy from a Chaotic Signal,”” P.
Grassberger and 1. Procaccia, Phys. Rev. A 28, 2591-2593 (1983). (I)
170. ‘‘Kolmogorov Entropy and Numerical Experiments,’”” G. Benettin, L.
Galgani, and J.-M. Strelcyn, Phys. Rev. A 14, 2338-2345 (1976). Re-
printed in Ref. 31, Vol. I. A nice discussion of the relationship between
K-entropy and Lyapunov exponents. (I)

6. Attractor dimensions

If the ‘‘dimension’’ of a phase-space attractor is not an
integer, then the attractor is said to be a strange attractor. The
corresponding dynamical behavior is usually chaotic. A good
survey and comparison of the various kinds of dimensions
can be found in Ref. 13.

171. ““The Dimension of Chaotic Attractors,”” D. Farmer, E. Ott, and J. A.
Yorke, Physica D 7, 153-180 (1983). Careful definitions of Hausdorff
dimension, capacity (box-counting) dimension, and information dimen-
sion with various examples. (E)

172. “‘Fractal Dimension: Limit Capacity or Hausdorff Dimension?”’ C.
Essex and M. Nerenberg, Am. J. Phys. 58, 986-988 (1990). Some
examples of sets that yield different numerical values for the different
definitions of dimensions. (I)

7. Generalized dimensions

To completely characterize a chaotic attractor, you must
use an infinity of generalized dimensions. For an elementary
introduction, see Ref. 15.

173. ‘“‘Generalized Dimensions of Strange Attractors,”” P. Grassberger,
Phys. Lett. A 97, 227-230 (1983). (I)

174. *‘The Infinite Number of Generalized Dimensions of Fractals and
Strange Attractors,”” H. Hentschel and I. Procaccia, Physica D 8, 435-
444 (1983). (I)

8. Correlation dimension

The correlation dimension is by far the most widely used
method of characterizing strange attractors.

175. ‘‘Characterization of Strange Attractors,”” P. Grassberger and I. Pro-
caccia, Phys. Rev. Lett. 50, 346-349 (1983). The introduction of the
correlation dimension. (I)

176. ‘‘Strange Attractors in Weakly Turbulent Couette—Taylor Flow.”" A.
Brandstater and H. L. Swinney, Phys. Rev. A 35, 2207-2220 (1987).
This paper analyzes experimental data using the embedding technique
and carefully examines how choices of time lags, sampling rates, em-
bedding dimensions, and number of data points affect the computed
value of the correlation dimension. (I)

R. C. Hilborn and N. B. Tufillaro 828



st St

177. **Calculating the Dimension of Attractors from Small Data Sets,” N.
B. Abraham, A. M. Albano, B. Das, G. De Guzman, S. Yong, R. S.
Gioggia. G. P. Puccioni. and J. R. Tredicce, Phys. Lett. A 114, 217
221 (1986). Good discussion of the computational pitfalls surrounding
correlation dimensions. (I)

178. **Spurious Dimension from Correlation Algorithms Applied to Limited
Time-Series Data,’” J. Theiler, Phys. Rev. A 34, 2427-2432 (1986). (1)

179. **Singular-Value Decomposition and the Grassberger—Procaccia Algo-
rithm,”” A. M. Albano, J. Muench, C. Schwartz, A. I. Mees, and P. E.
Rapp, Phys. Rev. A 38, 3017-3026 (1988). This paper suggests the use
of the so-called singular-value decomposition to enhance the speed of
calculation of the correlation dimension. (I)

180. **Deterministic Chaos: The Science and the Fiction,”” D. Ruelle, Proc.
R. Soc. London, Ser. A 427, 241-248 (1990). This essay includes
cautions on calculating the correlation dimension with small data sets.
Y]

181. ““Estimating correlation dimension from a chaotic time series: When
does plateau onset occur?”” M. Ding, C. Grebogi, E. Ott, T. Sauer, and
J. A. Yorke, Physica D 69, 404-424 (1993). Some important details in
determining correlation dimension from actual data sets. (I)

182. “‘Optimal Reconstruction Space for Estimating Correlation Dimen-
sion,”” R. C. Hilborn and M. Ding, Int. J. Bifurcations Chaos 6 (2),
377-381 (1996). A way to estimate the “‘best’’ embedding dimension
for determining the correlation dimension. (I)

9. Kaplan—Yorke conjecture

There is a connection between Lyapunov exponents char-
acterizing the temporal divergence of phase-space trajecto-
ries and the *‘dimensions’’ that quantify the geometric char-
acter of phase-space attractors.

183. **Chaotic Behavior of Multidimensional Difference Equations,”” J. L.
Kaplan and J. A. Yorke, in Functional Differential Equations and
Approximations of Fixed Points, Springer Lecture Notes in Math-
ematics Vol. 730, edited by H.-O. Peitgen and H.-O. Walter (Springer-
Verlag, Berlin, 1979), pp. 204-240. (I)

L. Fractals, multifractals, and the thermodynamic
formalism

The geometry of strange attractors is best described by
fractals.

184. *‘Resource Letter FR-1: Fractals,”” A. J. Hurd, Am. J. Phys. 56 (11),
969-975 (1989). (I)

The following books and article provide excellent introduc-
tions to fractal geometry:

185. The Fractal Geometry of Nature, B. B. Mandlebrot (Freeman, San
Francisco, 1982). The masterful (but often frustratingly diffusive) ac-
count by the inventor of the term fractal. (E,I)

186. The Beauty of Fractals, H.-O. Peitgen and P. H. Richter (Springer-
Verlag, Berlin, 1986). A book with beautiful pictures and enough detail
of the mathematics so you can begin developing your own fractal pic-
tures. (I)

187. Fractals Everywhere, M. Bamnsley (Academic, San Diego, 1988). A
more mathematically sophisticated introduction to fractals. (A)

188. ‘*The Language of Fractals,”” H. Jurgens, H.-O. Peitgen, and D. Saupe,
Sci. Am. 263 (2), 60-67 (1990). (E)

1. Fractal basin boundaries

189. “‘Intermittent Chaos and Low-Frequency Noise in the Driven Damped
Pendulum,”” E. G. Gwinn and R. M. Westervelt, Phys. Rev. Lett. 54,
1613-1616 (1985). (I)

190. “‘Fractal Basin Boundaries and Intermittency in the Driven Damped
Pendulum,” E. G. Gwinn and R. M. Westervelt, Phys. Rev. A 33,
4143-4155 (1986). (1)
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2. Multifractals and f(a)

Most attractors in nonlinear dynamics are not simple frac-
tals, but require generalized fractal dimensions to describe
them completely. f(a) gives a statistical distribution of frac-
tal dimensions.

191. “*Fractal Measures and Their Singularities: The Characterization of
Strange Sets,” T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procac-
cia, and B. L. Schraiman, Phys. Rev. A 33, 1141-1151 (1986). (A)

192. “‘Direct Determination of the f(a) Singularity Spectrum,”” A. Chhabra
and R. V. Jensen, Phys. Rev. Lett. 62, 1327-1330 (1989). (A)

193. “‘Multifractal Phenomena in Physics and Chemistry,”” H. E. Stanley
and P. Meakin, Nature 335, 405-409 (1988). (E,I)

3. Generalized entropies, g(A), and the thermodynamic
Jformalism

The Kolmogorov entropy and its generalizations are
closely related to Lyapunov exponents. For an introduction,
see Ref. 15.

194. Probability Theory, A. Renyi (North-Holland, Amsterdam, 1970). (I)

195. ““Estimation of the Kolmogorov Entropy from a Chaotic Signal,” P.
Grassberger and I. Procaccia, Phys. Rev. A 28, 2591-2593 (1983). The
connection between the derivative of the correlation sum with embed-
ding dimension and the K entropy. (I)

196. ‘‘Dimensions and Entropies of Strange Attractors from a Fluctuating
Dynamics Approach,”” P. Grassberger and 1. Procaccia, Physica D 13,
34-54 (1984). (A)

197. “‘Dynamical Spectrum and Thermodynamic Functions of Strange Sets
from an Eigenvalue Problem,”” T. Tél, Phys. Rev. A 36, 2507-2510
(1987). (A)

198. “‘Generalized Dimensions and Entropies from a Measured Time Se-
ries,”” K. Pawelzik and H. G. Schuster, Phys. Rev. A 35, 481-484
(1987). Discussion of the generalized correlation sums C‘; and g(A)
distribution. (A)

199. “*The Thermodynamics of Fractals,”” T. Bohr and T. Tél. in Ref. 31,
Vol. II. A thorough discussion of the thermodynamic formalism (but
limited to one-dimensional systems). (A)

M. Noise and stochastic resonance

How does noise, present in all real systems, affect nonlin-
ear dynamics? Can nonlinear methods be used to reduce the
effects of noise?

200. **Fluctuations and simple chaotic dynamics,” J. P. Crutchfield, J. D.
Farmer, and B. A. Huberman, Phys. Rep. 92, 45-82 (1982). ()

201. **Scaling for external noise at the onset of chaos,”’ J. Crutchfield, M.
Nauenberg, and J. Rudnick, Phys. Rev. Lett. 46, 933-935 (1981). (I)

202. “‘Functional renormalization group theory of universal 1/f-noise in
dynamical systems,”’ I. Procaccia and H. G. Schuster, Phys. Rev. A 28,
1210-1212 (1983). (A)

203. “*Scaling law for characteristic times of noise-induced crises,” J. C.
Sommerer, E. Ott, and C. Grebogi, Phys. Rev. A 43, 1754-1769
(1991). The theory of so-called noise-induced crises. I

204. “‘Experimental Confirmation of the Scaling Theory of Noise-Induced
Crises,”” J. C. Sommerer, W. L. Ditto, C. Grebogi, E. Ott, and M. L.
Spano, Phys. Rev. Lett. 66, 1947-1950 (1991). (I)

1. Noise-reduction methods

205. **On noise reduction methods for chaotic data,”” P. Grassberger, R.
Hegger, H. Kantz, C. Schaffrath, and Th. Schreiber, Chaos 3, 127-140
(1993). Compares various ways of reducing the effects of noise in real
data using nonlinear dynamics techniques. (I)

206. ‘‘Noise reduction in chaotic time-series data: A survey of common
methods.’” E. J. Kostelich and Th. Schreiber, Phys. Rev. E 48, 1752
1762 (1993). (I)

207. ““‘Nonlinear noise reduction—A case study on experimental data,”’ H.
Kantz, Th. Schreiber, I. Hoffman, T. Buzug, G. Pfister, L. G. Flepp, J.
Simonet, R. Badii, and E. Brun, Phys. Rev. E 48 (2), 1529-1538
(1993). (O
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2. Stochastic resonance

Adding more noise paradoxically can increase the signal-
to-noise ratio under certain conditions.

208. ‘‘Tuning in to Noise,”” A. R. Bulsara and L. Gammaitoni, Phys. Today
49 (3), 39-45 (1996). (E)

209. ‘‘The Benefits of Background Noise,”” F. Moss and K. Wiesenfeld, Sci.
Am. 273 (2), 66-69 (1995). (E)

210. ‘‘Stochastic resonance and the benefits of noise: From ice ages to
crayfish and squids,”” K. Wiesenfeld and F. Moss, Nature 373, 33-36
(1995). (I)

N. Hysteresis

211. *‘Scaling Laws for Dynamical Hysteresis in a Multidimensional Laser
System,”” A. Hohl, H. J. C. van der Linden, R. Roy, G. Goldsztein, F.
Broner, and S. H. Strogatz, Phys. Rev. Lett. 74, 2220-2223 (1995). (I)

VI. APPLICATIONS

A. Simple mechanical systems, engineering applications,
acoustics

Reference 98 contains an analysis of a vibrating string
experiment.

212, ‘‘Horseshoes in the driven, damped pendulum,”’ E. G. Gwinn and R.
M. Westervelt, Physica D 23, 396-401 (1986). (I)

213. ‘‘Chaotic dynamics of a bouncing ball,”” N. B. Tufillaro and A. M.
Albano, Am. J. Phys. 54 (10), 939-944 (1986). (I)

214. ‘‘Nonlinear and Chaotic String Vibrations,”” N. B. Tufillaro, Am. J.
Phys. 57, 408-414 (1989). (I)

215. ““Two balls in one dimension with gravity,”” N. D. Whelan, D. A.
Goodings, and J. K. Cannizzo, Phys. Rev. A 42, 742-754 (1990). (I)

216. ‘‘Impact Oscillators,”” S. R. Bishop, Philos. Trans. R. Soc. London
(Phys. Sci. Eng.) 347 (1683), 347-351 (1993). (I)

217. “‘Stability and Hopf bifurcations in an inverted pendulum,” J. A.
Blackburn, H. J. T. Smith, and N. Gronbechjensen, Am. J. Phys. 61
(10), 903-908 (1993). (I)

218. ‘‘Chaos in a double pendulum,’”’ T. Shinbrot, C. Grebogi, J. Wisdom,
and J. A. Yorke, Am. J. Phys. 60 (6), 491-499 (1992). (I)

219. ‘‘Deterministic chaos in the elastic pendulum—a simple laboratory for
nonlinear dynamics,”’ R. Cuerno, A. F. Ranada, and J. J. Ruizlorenzo,
Am. J. Phys. 60 (1), 73-79 (1992). (I)

220. ‘‘Double pendulum—an experiment in chaos,”” R. B. Levien, and S.
M. Tan, Am. J. Phys. 61 (11), 1038-1044 (1993). (I)

221. ‘‘Chaos at the amusement park—dynamics of the tilt-a-whirl,”” R. L.
Kautz and B. M. Huggard, Am. J. Phys. 62 (1), 59-66 (1994). (I)

222, “‘Chaos in a simple impact oscillator: The Bender bouncer,” J. S.
Walker and T. Soule, Am. J. Phys. 64 (4), 397-409 (1996). A nice
example of a ‘‘piecewise linear’* system and how chaos can arise from
boundary conditions; nonlinearity in the evolution equations is not re-
quired. (I)

Acoustics

223. ‘‘Methods of chaos physics and their application to acoustics,”” W.
Lauterborn and U. Parlitz, J. Acoust. Soc. Am. 84, 1975-1993 (1988).
M

224. ‘‘Introduction to acoustical chaos,”’ D. Crighton and L. A. Ostrovsky,
Chaos 5 (3), 495 (1995). Introduction to a focus issue on acoustical
chaos. (I)

B. Simple electronic systems

225. “‘Evidence for Universal Chaotic Behavior of a Driven Nonlinear Os-
cillator,”’ J. Testa, J. Perez, and C. Jeffries, Phys. Rev. Lett. 48, 714~
717 (1982). [See the Comment on this article by E. R. Hunt, Phys. Rev.
Lett. 49, 1054 (1982).] (I)

226. ‘‘Exactly Solvable Model of a Physical System Exhibiting Universal
Chaotic Behavior,”” R. Rollins and E. R. Hunt, Phys. Rev. Lett. 49,
1295-1298 (1982). (I) .

227. *‘Simplest Chaotic Nonautonomous Circuit,”” T. Matsumoto, L. O.
Chua, and S. Tanaka, Phys. Rev. A 30, 1155-1157 (1984). (I)

830 Am. J. Phys., Vol. 65, No. 9, September 1997

228. ‘‘Observation of Chaotic Dynamics of Coupled Nonlinear Oscilla-
tors.”” R. Van Buskirk and C. Jeffries, Phys. Rev. A 31. 3332-3357
(1985). A detailed description of how one can study chaos using simple
semiconductor diodes. Lots of pictures and diagrams. (I)

229. “*Universal Scaling and Chaotic Behavior of a Josephson-Junction
Analog,”” W. J. Yeh and Y. H. Kao, Phys. Rev. Lett. 49, 18881891
(1982). (I)

230. *Type-II intermittency in a coupled nonlinear oscillator: Experimental
observation,’’ J.-Y. Huang and J.-J. Kim, Phys. Rev. A 36, 1495-1497
(1987). (I)

231. ‘‘The Electronic Bouncing Ball,”* R. L. Zimmerman, S. Celaschi, and
L. G. Neto, Am. J. Phys. 60 (4), 370-375 {1992). (I)

232. ““How to Generate Chaos at Home,”” D. Smith, Sci. Am. 266 (1),
144-146 (1992). (E)

233. “‘The Chaotic Oscilloscope,”” M. T. Levinsen, Am J. Phys. 61 (2),
155-165 (1993). An oscilloscope combined with a photodiode shows
chaotic behavior. (I)

234, Special issue on chaos in nonlinear electronic circuits, L. O. Chua and
M. Hasler, IEEE Trans. Circuits Syst. 40 (10-11) (1993). (I)

C. Biological and medical systems

235. The Geometry of Biological Time, A. T. Winfree (Springer-Verlag,
New York, 1980). (E.I)

236. ‘‘Global Bifurcations and Chaos in a Periodically Forced Biological
Oscillator,”” L. Glass, M. R. Guevar, J. Belair, and A. Shrier, Phys.
Rev. A 29, 1348-1357 (1984). (I)

237. *‘Chaotic Cardiac Rhythms,”’ L. Glass, A. Shrier, and J. Belair, in Ref.
51, pp. 237-256. (I)

238. “‘A Circle Map in a Human Heart,”” M. Courtemancho, L. Glass, J.
Belari, D. Scagliotti, and D. Gordon, Physica D 40, 299-310 (1989).
M

239. ‘““How brains make chaos in order to make sense of the world,” C. A.
Skarda and W. J. Freeman, Behav. Brain Sci. 10, 161-195 (1987),
with comments from respondents. (I)

240. ‘‘Cardiac arrhythmias and circle maps—A classical problem,” L.
Glass, Chaos 1 (1), 13-19 (1991). (I)

241. ‘‘Nonlinear dynamics of physiological function and control,”” L. Glass,
Chaos 1 (3), 247-250 (1991). Lead-off article for a focus issue on
nonlinear dynamics of physiological control. (I)

242. ‘“‘Coupled Oscillators and Biological Synchronization,”” S. Strogatz
and 1. Stewart, Sci. Am. 269 (6), 102-109 (1993). (E)

243. ‘‘Why chaos is best for hearts and minds,”” R. Pease, New Sci. 146
(1982), 18 (1995). (E)

244. ‘‘Dynamical disease: Identification, temporal aspects and treatment
strategies,”” J. Bélair, L. Glass, U. an der Heiden, and J. Milton, Chaos
5 (1), 1-7 (1995). Lead-off article for focus issue on dynamical dis-
ease: mathematical analysis of human illness. (I)

D. Chemical reaction systems

245. ‘*One-dimensional Dynamics in a Multicomponent Chemical Reac-
tion,”” R. H. Simoyi, A. Wolf, and H. L. Swinney, Phys. Rev. Lett. 49,
245-248 (1982). (I)

246. *‘Multiplicity in a Chemical Reaction with One-Dimensional Dynam-
ics,”” K. Coffman, W. D. McCormick, and H. L. Swinney, Phys. Rev.
Lett. 56, 999-1002 (1986). A quite readable description of the obser-
vations of violations of the MSS U-sequence [Ref. 62] for periodic
windows in an experimental study of oscillating chemical reactions. (I)

247. ‘‘Universality, multiplicity, and the effect of iron impurities in the
Belousov—-Zhabotinskii reaction,”” K. G. Coffman, W. D. McCormick,
R. H. Noszticziu, Z. Simoyi, and H. L. Swinney. J. Chem. Phys. 86,
119-129 (1987). (D)

248. Oscillations, Waves, and Chaos in Chemical Kinetics, S. K. Scott
(Oxford U. P., New York, 1994). (I)

Reaction—diffusion systems

249. ‘‘The Chemical Basis of Morphogenesis,”’ A. M. Turing, Philos. Trans.
R. Soc. London, Ser. B 237, 37-72 (1952). (I)

250. ‘‘Bifurcation, Propagating Solutions, and Phase Transitions in a Non-
linear Reaction with Diffusion,”” A. M. Albano, N. B. Abraham, D. E.
Chyba, and M. Martelli, Am. J. Phys. 52, 161-167 (1984). (I)
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251. "*Regular and Chaotic Chemical Spatiotemporal Patterns,”” W. Y. Tam,
J. A. Vastano, H. L. Swinney, and W. Horsthemke, Phys. Rev. Lett. 61,
2163-2166 (1988). (I)

252. **A history of chemical oscillations and waves,”” A. M. Zhabotinsky,
Chaos 1 (4), 379-386 (1991). Lead-off article for focus issue on non-
linear dynamics in chemistry. (I)

253. **Transition to Chemical Turbulence,”” Q. Ouyang and H. L. Swinney,
Chaos 1, 411-419 (1991). (I)

E. Lasers and other optical systems

254. **Evidence for Lorenz-Type Chaos in a Laser,”” C. O. Weiss and J.
Brock, Phys. Rev. Lett. 57 (22), 28042806 (1986). (I)

255. *‘Optical Chaos,”” P. W. Milonni, J. R. Ackerhalt, and M.-L. Shih,
Optics News 34-37 (March, 1987). (I)

256. *‘Complexities and progress in studies of optical chaos,”” Optics News
8-12 (August, 1989). (I)

257. **Homoclinic and Heteroclinic Chaos in a Single-Mode Laser,” C. O.
Weiss, N. B. Abraham, and U. Hiibner, Phys. Rev. Lett. 61 (14),
15871590 (1988). (I).

Two issues of the Journal of the Optical Society of America

have been devoted to nonlinear dynamics in optics:

258. “‘Overview of Instabilities in Laser Systems,”” N. B. Abraham, L. A.
Lugiato, and L. M. Narducci, J. Opt. Soc. Am. B 2, 7-13 (1985). This
lead-off article for the issue devoted to *‘Instabilities in Active Optical
Media’’ gives a good survey of the field. (I)

259. *‘Nonlinear Dynamics of Lasers,”” J. Opt. Soc. Am. B 5 (5) (May,
1988). (I)

260. Laser Physics and Laser Instabilities, L. M. Narducci and N. B.
Abraham (World Scientific, Singapore, 1988). (I)

261. “‘Intermittency in the Coherence Collapse of a Semiconductor Laser
with External Feedback,” J. Sacher, W. Elsasser, and E. Gobel, Phys.
Rev. Lett. 63, 2224-2227 (1989). ()

262. ‘‘Experimental Evidence of Chaotic Itinerancy and Spatiotemporal
Chaos in Optics,”” F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S.
Residori, Phys. Rev. Lett. 65 (20), 2531-2534 (1990). (I)

263. *‘Type III intermittency of a laser,”” D. Y. Tang, J. Pujol, and C. O.
Weiss, Phys. Rev. A 44, 35-38 (1991). (I)

264. *‘Chaotic behavior in transverse-mode laser dynamics,”” W. Kaige, N.
B. Abraham, and A. M. Albano, Chaos 3 (3), 287-294 (1993). (I)

265. ‘‘Flowerlike Patterns Generated by a Laser Beam Transmitted through
a Rubidium Cell with Single Feedback Mirror,”” G. Grynberg, A. Mai-
tre, and A. Petrossian, Phys. Rev. Lett. 72 (15), 2379-2382 (1994). (I)

F. Pattern formation and spatiotemporal chaos

Nonlinear wave effects are important in many areas of
physics.
266. Nonlinear Waves, Solitons and Chaos, E. Infeld and G. Rowlands
(Cambridge, U. P., Cambridge, 1990). (I)

Nonlinear systems can generate interesting spatial patterns
and the dynamics can be much more complicated when spa-
tial degrees of freedom are included. (For examples in optics,
see Sec. VIE.)

1. General introductions to pattern formation

267. ‘*Self-Organizing Structures,”” B. F. Madure and W. L. Freedman, Am.
Sci. 75, 252-259 (1987). (E)

268. Mathematical Biology, J. D. Murray (Springer-Verlag, New York,
1989). An extensive treatment of the mathematics of pattern formation
(and many other topics) in biology. (I)

269. “*Synergetics: An Overview,”” H. Haken, Rep. Prog. Phys. 52, 515-533
(1989). (1)

270. ‘‘Disorder, Dynamical Chaos, and Structures,” A. V. Gaponov-
Grekhov and M. I. Rabinovich, Phys. Today 43 (7), 30-38 (July,
1990). (I)

271. Origins of Order: Self-Organization and Selection in Evolution, S.
A. Kaufman (Oxford U. P., New York, 1991). (I)

272. ‘‘Pattern-Formation Outside of Equilibrium,”” M. C. Cross and P. C.
Hohenberg, Rev. Mod. Phys. 65 (3), 851-1112 (1993). A comprehen-
sive survey of pattern formation in nonlinear systems. ()
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273. *Nature's Algorithms,"" B. Hayes, Am. Sci. 82, 206-210 (1994). Nice
introductory survey of various kinds of pattern growth. (E)

274. **Spatio-temporal patterns: Observation and analysis,” H. L. Swinney,
in Ref. 39, pp. 557-567. (1)

275. **Spatiotemporal Chaos.”” M. C. Cross and P. C. Hohenberg, Science
263 (5153), 1569-1570 (1994). (E)

276. “*Oscillating granular layers produce stripes, squares, hexagons...,”” G.
B. Lubkin, Phys. Today 48 (10), 17-19 (1995).(E)

2. Coupled iterated maps and coupled oscillator models

277. “*Pattern Dynamics in Spatiotemporal Chaos,”” K. Kaneko, Physica D
34, 1-41 (1989). (I)

278. *‘Overview of coupled map lattices,”” K. Kaneko, Chaos 2 (3), 279-
282 (1992). Lead-off article for focus issue on coupled-map lattices,
models for spatially extended systems. (I)

279. *‘Spatial Structure and Chaos in Insect Population Dynamics,”” M.
Hassell, H. Comins, and R. May, Nature 353, 255-258 (1991). (I)

280. *‘Dynamics of a large system of coupled nonlinear oscillators,” P.
Matthews, R. Mirollo, and S. Strogatz, Physica D 52, 293-331 (1991).
)

3. Cellular automata

Discrete lattice systems with simple dynamical evolution
rules are useful models of spatiotemporal effects. Reference
25 (Vol. I, Chap. 10) has a useful introduction.

281. *‘Cellular Automata as Models of Complexity,”” S. Wolfram, Nature
341, 419-424 (1984). (E)

282. “‘Sticks and Stones: A Guide to Structurally Dynamic Cellular Au-
tomata,”’ P. Halpern, Am. J. Phys. 57, 405-408 (1989). (I)

4. Neural networks

283. *‘Temporal sequences and chaos in neural nets,”’ U. Riedel, R. Kuhn,
and L. van Hemmen, Phys. Rev. A 38, 1105-1108 (1988). (I)

284. *‘Chaos in Random Neural Networks,”” H. Sompolinsky, A. Crisanti,
and H. J. Sommers, Phys. Rev. Lett. 61, 259-262 (1988). (A)

285. “*Chaotic Neural Networks,” K. Aihara, T. Takabe, and M. Toyoda,
Phys. Lett. A 144, 333-340 (1990). (I)

286. ‘“*Synchronization and Computation in a Chaotic Neural Network,”’ D.
Hansel and H. Sompolinsky, Phys. Rev. Lett. 68, 718-21 (1992). (A)

5. Pattern formation in excitable media

287. **From oscillations to excitability: A case study in spatially extended
systems,”” S. C. Miiller, P. Coullet, and D. Walgraef, Chaos 4 (3),
439-442 (1994). Lead-off article for focus issue on *‘From oscillations
to excitability—case study in spatially extended systems.’* (I)

288. “‘Antichaos and Adaptation,”” S. A. Kaufman, Sci. Am. 265 (2), 78-84
(August, 1991). The emergence of order from disorder in Boolean
networks and its possible implications for genetics and biological ad-
aptation. (E)

6. Fractal growth

289. “‘Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon,”’ T.
A. Witten, Jr. and L. M. Sander, Phys. Rev. Lett. 47, 1400-1403
(1981).(I)

290. ‘‘Fractal Growth,”” L. M. Sander, Sci. Am. 256 (1), 94—100 (1987).
General properties of systems that develop fractal geometric patterns.
(E)

291. “'The Statistical Physics of Sedimentary Rock,” P. Z. Wong, Phys.
Today 41 (12), 24-32 (1988). The physics and applications of
diffusion-limited aggregation, electrodeposition, and viscous fingering.
(E)

292. *‘Fluid Interfaces, Including Fractal Flows can be Studied in a Hele—
Shaw Cell,”” J. Walker, Sci. Am. 257 (5), 134-38 (1987). How to
make your own viscous fingering cell. (E)

293. ‘‘Multifractal Phenomena in Physics and Chemistry,”” H. E. Stanley
and P. Meakin, Nature 335, 405-409 (1988).(I)

294. Fractal Growth Phenomena (2nd ed.), T. Vicsek (World Scientific,
River Edge, NJ, 1991). (I)
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Just as in crystal growth and crystal properties, defects play
an important role in pattern formation.

295. **Vortices and Defect Statistics in Two-Dimensional Optical Chaos,”’
F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Residori, Phys.
Rev. Lett. 67, 3749-3752 (1991). (A)

7. Self-organized criticality

296. **‘Self-Organized Criticality: An Explanation of 1/f Noise,”” P. Bak, C.
Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381-384 (1987). (I)

297. *‘Self-Organized Criticality,”” P. Bak, C. Tang, and K. Wiesenfeld,
Phys. Rev. A 38, 364-374 (1988). (I)

298. ‘“The Physics of Fractals,”” P. Bak and K. Chen, Physica D 38, 5-12
(1989). An attempt to explain why fractals appear in so many physical
systems. (I)

299. ‘‘Properties of Earthquakes Generated by Fault Dynamics,’’ J. M. Carl-
son and J. S. Langer, Phys. Rev. Lett. 62, 2632-2635 (1989). (I)

300. ‘‘Self-Organized Criticality,”” P. Bak and K. Chen, Sci. Am. 264 (1),
46-53 (1991). (E)

301. ‘‘Self-Organized Criticality—An experiment with sandpiles,”” S. K.
Grumbacher, K. M. Mcewen, D. A. Halverson, D. T. Jacobs, and J.
Lindner, Am. J. Phys. 61 (4), 329-335 (1993). (E)

302. ‘‘Simple models of self-organized criticality,”” G. Grinstein and C.
Jayaprakash, Comput. Phys. 9 (2), 164—169 (1995). (I)

303. ‘‘Exact Results for Spatiotemporal Correlations in a Self-Organized
Critical Model of Punctuated Equilibrium,’’ S. Boettcher and M. Pac-
zuski, Phys. Rev. Lett. 76, 348-351 (1996). (A)

304. How Nature Works: The Science of Self-Organized Criticality, P.
Bak (Springer-Verlag, New York, 1996). (E)

G. Astrophysics

Historically, Poincaré’s attempt to understand the many-
body gravitational problem led to his work in nonlinear dy-
namics. See Ref. 8 for an excellent introduction.

305. **Chaotic Evolution of the Solar System,”” G. J. Sussman and J. Wis-
dom, Science 257, 56—62 (1992). A special computer was used to track
the trajectories of the planets for the equivalent of 100 million years.
The solar system has a positive Lyagﬂnov exponent with 1/x\ =4 mil-
lion years. (I) '

306. ‘‘Chaos in SS Cygni?”’ J. K. Cannizzo and D. A. Goodings, Astrophys.
J. 334, L31-L34 (1988). The authors analyze variable light signals
from a close binary system and conclude that the signal is not charac-
terized by a low-dimensional strange attractor. (A)

307. ‘‘Chaotic Behavior in the Solar System,’’ J. Wisdom, in Dynamical
Chaos, edited by M. Berry, 1. Percival, and N. Weiss (Princeton U.P.,
Princeton, NJ, 1987). First published in Proc. R. Soc. London, Ser. A
413, 1-199 (1987). (I)

308. ‘‘Pluto’s Orbital Motion Looks Chaotic,”” R. A. Kerr, Science 240,
986-987 (1988). (E)

309. *‘Topological analysis of chaotic orbits—revisiting hyperion,”” P. T.
Boyd, G. B. Mindlin, R. Gilmore, and H. G. R. Solari, Astrophys. J.
431 (1), 425-431 (1994). (A)

310. ‘‘Chaos and Stochasticity in Space Plasmas,’”” Geophys. Res. Lett. 18
(8) (1991). Special issue devoted to nonlinear and chaotic effects. (A)

311. ‘‘Planets in Chaos,”” A. Youngman, New Sci. 146 (1974), 55-56
(1995). (E)

H. Controlling and synchronizing chaos

Sensitive dependence on initial conditions can be ex-

ploited to control chaotic systems.

312. *‘Controlling Chaos,”’ E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev.
Lett. 64, 1196-1199 (1990). (I)

313. “‘Experimental Control of Chaos,”” W. L. Ditto, S. N. Rauseo, and M.
L. Spano, Phys. Rev. Lett. 65, 3211-3214 (1990). (I)

314. ‘‘Mastering Chaos,”” W. L. Ditto and L. M. Pecora, Sci. Am. 269 (2),
78-84 (1993). (E) .

315. ‘‘Keeping chaos at bay,”” E. R. Hunt and G. Johnson, IEEE Spectr. 30
(11), 32-36 (1993). (E)
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316. *‘Stabilizing High-Period Orbits in a Chaotic System: The Diode Reso-
nator,”” E. R. Hunt, Phys. Rev. Lett. 67, 1953—1955 (1991). ()

317. **Controlling Chaos Using Time Delay Coordinates.”” U. Dressler and
G. Nitsche, Phys. Rev. Lett. 68, 1-4 (1992). (A)

318. ‘‘Dynamical Control of a Chaotic Laser: Experimental Stabilization of
a Globally Coupled System,”* R. Roy, T. Murphy, T. Maier, Z. Gills,
and E. R. Hunt, Phys. Rev. Lett. 68, 1259-1262 (1992). (I)

319. ‘“Tracking Unstable Steady States: Extending the Stability Regime of a
Multimode Laser System,”” Z. Gills, C. Iwata, R. Roy. I. Schwartz, and
I. Triandof, Phys. Rev. Lett. 69, 3169-3172 (1992). (I)

320. ‘‘Controlling Chaos in High Dimensional Systems,"’ D. Auerbach, C.
Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. Lett. 69, 3479-3482
(1992). (A)

321. ‘‘Controlling Cardiac Chaos,”” A. Garfinkel, M. L. Spano, W. L. Ditto,
and J. N. Weiss, Science 257, 1230-1235 (1992). Rabbit heart arrhyth-
mias controlled by nonlinear dynamics techniques. (I)

322. “‘Using small perturbations to control chaos,”” T. Shinbrot, C. Grebogi,
E. Ott, and J. A. Yorke, Nature 363, 411-417 (1993). (E)

323. “‘Control of the chaotic pendulum,’’ G. L. Baker, Am. J. Phys. 63 (9),
832-838 (1995). Detailed numerical computations illustrating the con-
trol of chaos. (I)

324, “‘Controlling Chaos,”” Y. C. Lai, Comput. Phys. 8 (1), 62-67 (1994).
o)

325. “‘Controlling Chaos,’’ E. Ott and M. Spano, Phys. Today 48 (5), 34-40
(1995). (E)

326. ‘‘Progress in the control of chaos,”” T. Shinbrot, Adv. Phys. 44, 73—
111 (1995). (I)

327. Controlling Chaos, T. Kapitaniak (Academic, San Diego, 1996). A
good introduction to various control schemes. Includes 13 reprints of
seminal papers in the field. (I)

Synchronizing chaotic systems

328. ‘‘Synchronization in chaotic systems,”” L. M. Pecora and T. L. Carroll,
Phys. Rev. Lett. 64, 821-824 (1990). Chaotic systems can be synchro-
nized with suitable interconnections. (I)

329. “‘Driving Systems with Chaotic Signals,”” L. Pecora and T. Carroll,
Phys. Rev. A 44, 2374-2383 (1991). (I)

330. ‘“Circuit Implementation of Synchronized Chaos with Applications to
Communications,” K. M. Cuomo and A. V. Oppenheim, Phys. Rev.
Lett. 71 (1), 65-68 (1993). How synchronized chaotic systems can be
used to encrypt and decode messages. (I)

331. *‘Synchronization of chaotic systems—the effects of additive noise and
drift in the dynamics of the driving,”’ R. Brown, N. F. Rulkov, and N.
B. Tufillaro, Phys. Rev. E 50 (6), 4488-4508 (1994). (I)

332. “‘The effects of additive noise and drift in the dynamics of the driving
on chaotic synchronization,”” R. Brown, N. Rulkov, and N. B. Tufil-
laro, Phys. Lett. A 162. 201-205 (1994). (I)

333. ‘“A simple circuit for demonstrating regular and synchronized chaos,’’
T. L. Carroll, Am. J. Phys. 63 (4), 377-379 (1995). ()

334, ‘‘Ordering chaos with disorder,”” S. H. Strogatz, Nature 378, 444
(1995). How a bit of disorder can help synchronize an array of oscil-
lators. (E)

335. ‘“Taming spatiotemporal chaos with disorder,”” Y. Braiman, J. F. Lind-
ner, and W. L. Ditto, Nature 378, 465-467 (1995). (I)

I. Fluid dynamics and fluid mixing

Fluid motion is a rich source of nonlinear behavior. The
best introductory references are Ref. 26 and
336. Hydrodynamic Instabilities and the Transition to Turbulence (2nd
ed.), edited by H. L. Swinney and J. P. Gollub (Springer-Verlag, New
York, 1985). (I)

1. Fluid mixing

337. ““The Mixing of Fluids,”’ J. M. Ottino, Sci. Am. 260 (1), 56-67 (1989).
Illustrates the connection between horseshoe dynamics and fluid tracer
experiments. Beautiful examples of stretching, compression, and fold-
ing. (E)

338. ‘‘Morphological Structure Produced by Mixing in Chaotic Flows,’" J.
M. Ottino, C. Leong, H. Rising, and P. Swanson, Nature 333, 419-425
(1988). (E)
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2. Turbulence

339. **On the Problem of Turbulence.”” L. D. Landau, Akad. Nauk. Doklady
44, 339 (1944). English translation reprinted in Ref. 31, Vol. I. A
proposal for a cascade of an infinite number of frequencies to explain
turbulence. (I)

340. *‘Turbulence: Challenges for Theory and Experiment,”’ U. Frisch and
S. A. Orszag, Phys. Today 43 (1), 24-32 (January, 1990). (E)

3. Leaky faucet

341. “‘The Chaotic Behavior of the Leaky Faucet,”” P. Martien, S. C. Pope,
P. L. Scott, and R. S. Shaw, Phys. Lett. A 110, 399-404 (1985). (I)

342. ‘‘Chaotic Rhythms of a Dripping Faucet,”” R. F. Cahalan, H.
Leidecker, and G. D. Cahalan, Comput. Phys. 4, 368-383 (1990). Us-
ing a computer to take data from a dripping faucet. (I)

343. “‘The Route to Chaos in a Dripping Faucet,”” K. Dreyer and F. R.
Hickey, Am. J. Phys. 59, 619-627 (1991). (1)

4. Rayleigh—Bénard (convection) experiments

344. “‘Fixed Winding Number and the Quasiperiodic Route to Chaos in a
Convective Fluid,”” J. Stavans, F. Heslot, and A. Libchaber, Phys. Rev.
Lett. 55, 596-599 (1985). (A)

345. ‘“‘Global Universality at the Onset of Chaos: Results of a Forced
Rayleigh—Bénard Experiment,”” M. H. Jensen, L. Kadanoff, A. Libch-
aber, I. Proccacia, and J. Stavans, Phys. Rev. Lett. 55, 2798-2801
(1985). (1)

346. ‘‘Simple Multifractal Cascade Model for Fully Developed Turbu-
lence,”” C. Meneveau and K. R. Sreenivasan, Phys. Rev. Lett. 59,
1424-1427 (1987). (A)

5. Surface waves

347. *‘Order-disorder transition in capillary ripples,”” N. B. Tufillaro, R.
Ramshankar, and J. P. Gollub, Phys. Rev. Lett. 62 (4), 422-425
(1989). (I)

348. ‘‘Patterns and Quasi-Patterns in the Faraday Experiment,”” W. S. Ed-
wards and S. Fauve, J. Fluid Mech. 278, 123148 (1994). (I)

349. **On Faraday Waves,’’ J. Miles, J. Fluid Dyn. 248, 671-683 (1993). (I)

J. Quantum chaos

How does a quantum system behave when its classical
counterpart exhibits chaos? See Ref. 74 for a good introduc-
tion.

350. *‘Quantum Chaos,”’ M. C. Gutzwiller, Sci. Am. 266 (1), 78-84 (1992).
An introductory essay on the questions raised by quantum chaos. (E)

351. **Quantum Chaos, Is There Any?"’ J. Ford, in Ref. 31, Vol. II, pp.
128-147. (I)

352. **The Quantum Chaos Problem,”” P. V. Elyatin, Sov. Phys. Usp. 31,
597-622 (1988). (A)

353. Chaos in Classical and Quantum Mechanics, M. C. Gutzwiller
(Springer-Verlag, New York, 1990). (A)

354. The Transition to Chaos in Conservative Classical Systems: Quan-
tum Manifestations, L. Reichl (Springer-Verlag, New York, 1992).
(A)

355. *‘Does Quantum Mechanics Obey the Correspondence Principle? Is it
Complete?”’ J. Ford and G. Mantica, Am. J. Phys. 60, 1086-1098
(1992). A provocative paper arguing that quantum mechanics is incom-
plete because it does not describe chaotic behavior. (I)

1. Semiclassical methods

356. ‘‘Postmodern Quantum Mechanics,”” E. J. Heller and S. Tomsovic,
Phys. Today 46 (7), 38-46 (1993). (E)

357. **Periodic Orbit Theory in Classical and Quantum Mechanics,”” P.
Cvitanovic, Chaos 2 (1), 1-4 (1992). This issue focuses on periodic
orbit theory in semiclassical quantum mechanics. (A)
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2. Map models in quantum mechanics

358. ‘‘Quantum-Classical Correspondence in Many-Dimensional Quantum
Chaos,’” S. Adachi, M. Toda, and K. Ikeda, Phys. Rev. Lett. 61, 659—
661 (1988). Coupled kicked-rotors show effects closer to those of clas-
sical chaos. (I)

359. ‘‘Experimental Realizations of Kicked Quantum Chaotic Systems.’’ R.
E. Prange and S. Fishman, Phys. Rev. Lett. 63, 704-707 (1989). An
experiment (modes in optical fibers) described by the kicked rotator
model. (I)

3. Energy level statistics

360. *‘Quantum Manifestations of Classical Chaos: Statistics of Spectra,”” J.
V. José, in Ref. 31, Vol. II, pp. 148-193. A good review of the issues
concerning energy level statistics as a symptom of classical chaos in
quantum mechanics. (A)

Atomic physics provides an ideal testing grounds for the no-
tions of quantum chaos because calculations can be done in
many cases to high accuracy and high precision experiments
on carefully controlled systems are its forte. The following
two items provide very readable general reviews:

361. “‘Chaos in Atomic Physics,”” R. V. Jensen, in Atomic Physics (Vol.
10), edited by H. Narumi and I. Shimamura (Elsevier, Amsterdam,
1987), pp. 319-332. (I)

362. ‘‘The Bohr Atom Revisited: A Test Case for Quantum Chaos,” R. V.
Jensen, Comments At. Mol. Phys. 25, 119-31 (1990). (I)

363. ‘“Microwave Ionization of Hydrogen Atoms: Experiment versus Clas-
sical Dynamics,”” K. A. H. van Leeuwen et al., Phys. Rev. Lett. 55,
2231-2234 (1985). Highly excited hydrogen atoms ionized by micro-
wave oscillating fields have been a test bed for both theory and experi-
ment dealing with quantum chaos. (I)

364. ‘‘Microwave Ionization of H Atoms: Breakdown of Classical Dynam-
ics for High Frequencies,’’ E. J. Galvex, B. E. Sauer, L. Moorman, P.
M. Koch, and D. Richards, Phys. Rev. Lett. 61, 2011-2014 (1988). (I)

365. *‘Tonization steps and phase-space metamorphoses in the pulsed micro-
wave ionization of highly excited hydrogen atoms,’” J. E. Bayfield, S.
Y. Lurie, L. C. Perotti, and M. P. Skrzypskowski, Phys. Rev. A 53,
R12-15 (1996). (I)

366. ‘‘Irregular Atomic Systems and Quantum Chaos,”” Comments At. Mol.
Phys. 25 (1-6), 1-362 (1991). An entire volume dedicated to the ques-
tion of atomic physics and quantum chaos. (I,A)

367. *‘Chaos in Atomic Physics,”” T. S. Monterio, Contemp. Phys. 35 (5),
311-327 (1994). (E)

368. ‘‘Sodium atoms kicked by standing waves provide new probe of quan-
tum chaos,’”’ G. P. Collins, Phys. Today 48 (6), 18-21 (1995). (I)

Single-electron atoms in strong magnetic fields have pro-

vided an impressive test of quantum predictions in a regime

for which the corresponding classical system is noninte-
grable and shows chaotic behavior. The quantum-mechanical
calculations are described in the following papers:

369. ‘‘Effect of Closed Classical Orbits on Quantum Spectra: Ionization of
Atoms in a Magnetic Field,”” M. L. Du and J. B. Delos, Phys. Rev.
Lett. 58, 1731-1733 (1987). (A)

370. “‘Positive-Energy Spectrum of the Hydrogen Atom in a Magnetic
Field,”” D. Delande, A. Bommier, and J. C. Gay, Phys. Rev. Lett. 66,
141-144 (1991). (A)

371. *‘Diamagnetic Rydberg atom: Confrontation of calculated and ob-
served,”” C.-H. Iu, G. R. Welch, M. M. Kasch, D. Kleppner, D. De-
lande, and J. C. Gay, Phys. Rev. Lett. 66, 145-148 (1991). The corre-
sponding experiment. (I)

4. Other quantum systems

372. ‘“‘Aspects of Chaos in Nuclear Physics,”” O. Bohigas and H. A.
Weidenmiiller, Annu. Rev. Nucl. Part. Sci. 38, 421-453 (1988). (I,A)

373. “‘Nature of Quantum Chaos in Spin Systems,”” G. Miiller, Phys. Rev.
A 34, 3345-3355 (1986). (A)
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K. Nonlinear forecasting

Forecasting with nonlinear dynamics and chaos. Sensitive
dependence on initial conditions would seem to make pre-
diction of chaotic behavior an impossibility. But you can
exploit some aspects of nonlinear dynamics to do better than
you might think.

374. **Predicting Chaotic Time Series,”” J. D. Farmer and J. J. Sidorowich,
Phys. Rev. Lett. 59, 845-848 (1987). (I)

375. **Nonlinear Predictions of Chaotic Time Series,”” M. Casdagli, Physica
D 35, 335-356 (1989). ()

376. Nonlinear Modeling and Forecasting, edited by M. Casdagli and S.
Eubank, Proceedings Volume XII, Santa Fe Institute Studies in the
Sciences of Complexity (Addison-Wesley, Reading, MA, 1992). Pro-
ceedings of the Workshop on Nonlinear Modeling and Forecasting,
September, 1990, Santa Fe, New Mexico. 1)

377. *“The future of time series: Learning and understanding,”” N. Gershen-
feld and A. S. Weigend, in Ref. 39. (I)

L. Complexity

The general issues of complex systems span many disci-
plines and have led to some speculations about general theo-
ries of complexity. See also, J. Ford in Ref. 31, Vol. II, pp.
139-147.

1. Algorithmic complexity and information theory

378. ‘‘Randomness and Mathematical Proof,”” G. J. Chaitin, Sci. Am. 232
(5), 47-52 (1975). (E)

379, ““How Random is a Coin Toss,”’ J. Ford, Phys. Today 36 (4), 40-47
(1983). (E) -

380. Algorithmic Information Theory, G. J. Chaitin, (Cambridge U.P.,
Cambridge, 1987). (A)

2. Complexity theory

381. Chance and Chaos, D. Ruelle (Princeton U.P., Princeton, NJ, 1991).
A good discussion of what ‘‘complexity theory’’ might be all about.
(E)

382. Complexity: The Emerging Science at the Edge of Order and
Chaos, M. M. Waldrop (Simon and Schuster, New York, 1992). (E)

383. Frontiers of Complexity: The Search for Order in a Chaotic
World, P. Coveney and R. Highfield (Fawcett/Columbine, New York,
1995). (E)

384. Hidden Order: How Adaptation Builds Complexity, J. H. Holland
(Addison-Wesley, Reading, MA, 1995). A collection of essays by one
of the complexity pioneers. (E)

385. At Home in the Universe, The Search for the Laws of Self-
Organization and Complexity, S. Kaufmann (Oxford U.P.,, New
York, 1995). (I)

386. **From Complexity to Perplexity,” J. Horgan, Sci. Am. 272 (6), 104—
109 (1995). A skeptical review of what complexity theory is up to. (E)

M. Economics geophysics, ecology, computer networks,

literary theory, and music

387. “‘Is the Business Cycle Characterized by Deterministic Chaos?”’ W. A.
Brooks and C. L. Sayers, J. Monetary Econ. 22, 71-90 (1988). (I)

388. **Chaos: Significance, Mechanism, and Economic Applications,” J.
Baumol and J. Benhabib, J. Econ. Perspectives 3, 77-105 (1989). (I)

389. “‘Nonlinearities in Economic Dynamics,”” J. A. Scheinkman, Econ. J.
100, 33-48 (1990). (I)

390. ‘‘Chaos and nonlinear forcastability in economics and finance,”’ B.
Lebaron, Philos. Trans. R. Soc. London, Ser. A 348 (1688), 397-404
(1994). ()

391. Nonlinear Dynamics, Chaos and Econometrics, edited by M.
Hashem Pesaran and S. M. Potter (Wiley, New York, 1993). (I)

392. “‘Chaos, Fractals, Nonlinear Phenomena in Earth Sciences,” D. L.
Turcotte, Rev. Geophys. 33 (Suppl. A), 341-344 (1995). (I)

393. *‘Nonlinear Dynamics and Predictability,”” W. I. Newman, A. Ga-
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bielov. D. L. Turcotte, and C. Yong, Pur. Appl. Geophys. Phen. 145
(2), 371-380 (1995). (I)

394, **Chaos in geophysical fluids 1. General Introduction,” R. Hide, Phi-
los. Trans. R. Soc. London, Ser. A 348 (1688), 431443 (1994). (D)

395. **El-Nino on the devils staircase-annual subharmonic steps to chaos.™
E.F. Jin. J. D. Neelin, and M. Ghil, Science 264 (5155), 70-72 (1994).
(E)

396. *‘El-Nino Chaos-Overlapping of resonances between the seasonal cycle .
and the pacific ocean-atmosphere oscillator.” E. Tziperman, L. Stone,
M. A. Cane, and H. Jarosph, Science 264 (5155). 7274 (1994). (E)

397. **An Ecology of Machines, How Chaos Arises in Computer Net-
works,”” B. A. Huberman, The Sciences (New York Academy of Sci-
ences), 38—44 (July/August, 1989). (I)

398. ‘‘Ecologists Flirt with Chaos,”’ R. Pool, Science 243. 310-313 (1989).
(E)

399. Chaos and Order: Complex Dynamics in Literature and Science.
edited by N. K. Hayles (University of Chicago Press, Chicago, 1991).
(E)

400. “‘Symphony in Chaos,”” E. Kostelich, New Sci. 146 (1972), 36-39
(1995). Chaos ideas applied to the composition of music. (E)

VII. SOFTWARE

401. Strange Attractors, J. C. Sprott (M&T Books, New York, 1993). (I)

402. Chaos Data Analyzer, J. C. Sprott (Physics Academic Software. North
Carolina State University, Box 8202, Raleigh, NC 27695). (M

403. Chaos Demonstrations, J. C. Sprott (Physics Academic Software,
North Carolina State University, Box 8202, Raleigh, NC 27695). (E)

404. Chaotic Dynamics Workbench, R. Rollings (Physics Academic Soft-
ware, North Carolina State University, Box 8202, Raleigh, NC 27695).
M

405. Chaos: The Software, R. Rucker and J. Gleick (Autodesk Inc.. Sau-
salito, CA, 1990). (E)

406. Chaotic Mapper, J. B. Harold (Physics Academic Software, North
Carolina State University, Box 8202, Raleigh, NC 27695). (I)

407. Fractint, T. Wegner and M. Peterson (freeware available on Com-
puserve, BIX, and other bulletin boards). (E)

408. Chaos: A Program Collection for the PC, H. J. Korsch and H.-J. Jodl
(Springer-Verlag, Berlin, 1994). (I)

409. Dynamics: Numerical Explorations, H. E. Nusse and J. A. Yorke
(Springer-Verlag, New York, 1994). (I)

ViII. INTERNET RESOURCES

410. A good jumping-off point in cyberspace for nonlinear dynamics is the
(hypertext) version of the nonlinear FAQ maintained by J. Meiss and
S. Doole
(http://amath.colorado.edulappm/faculty/jdm/faq.html). (E)

All of the major centers of nonlinear science research have
extensive Web sites. A few bookmarks to get you started
include:

411. Chaos at the University of Maryland (http://www-chaos.umd.edu). In
particular see their *‘Chaos Database,”’ which has a nice search engine
for an extensive bibliographic database (http://www-chaos.umd.edu/
publications/searchbib‘html). (E)

412. The Institute of Nonlinear Science at the University of California at
San Diego (http:/inls.ucsd.edu). (E)

413. The Center for Nonlinear Dynamics at University of Texas at Austin
(http://chaos.ph.utexas.edu). (E)

414. The Center for Nonlinear Science at Los Alamos National Lab (http:/
fcnls.lanl.gov). In particular, see the CNLS Nonlinear Science e-print
archive (http://cnls.lanl.gov/pbb.announce.html). and the Nonlinear
Dynamics Archive (htp://cnls.lanl.gov/nbt/intro.html). (E)

415. G. Chen, *‘Control and synchronization of chaotic systems (a bibliog-
raphy)”’ is available by anonymous ftp from (uhoop.egr.uh.edu/pub/
TeX/chaos.tex). (I)

416. **Nonlinear Dynamics Bibliography’’ maintained by the University of
Mainz (http:/www.uni-mainz.de/FB/Physik/Chaos/chaosbib.html). (E)

417. The Applied Chaos Laboratory at the Georgia Institute of Technology
(http://acl2.physics.gatech.edu/). (E)
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